Кто вы? - Петрович Николай Тимофеевич. Страница 21
Второй грозный очаг шумовой опасности в приемнике — это сами усилительные и преобразовательные каскады. В них используются такие электронные приборы, как лампы или полупроводники. Усиление или преобразование сигнала в них достигается за счет того, что слабый сигнал управляет более сильным потоком носителей зарядов. Водопроводный кран есть грубая модель таких устройств, — прикладывая небольшие усилия к вентилю, мы успешно управляем мощной водяной струей.
Вся беда состоит в том, что поток носителей зарядов (в лампах — это поток электронов, в полупроводниках — электронная и «дырочная» проводимость) невозможно сделать строго постоянным. Он колеблется вокруг некоторой средней величины по случайному закону, что, естественно, приводит к непостоянству величины усиливаемого сигнала, или, что то же самое, к появлению шума. По своим характеристикам он близок к тепловому.
Шумы этих двух очагов складываются и образуется результирующий шум приемного устройства. Анализ поединка сигнала и помех в приемнике, когда много отдельных источников шума, сложен. Поэтому применяют такой «ход конем»: реальный приемник заменяют идеальным, в котором нет ни единой шуминки, но на вход этого чудо-приемника включают генератор шума. Его мощность берут такой, чтобы он создавал в нашем бесшумном приемнике такой же шум, какой имел реальный приемник. Следовательно, вынос помех на вход вполне допустим — картина «добра и зла» в приемнике от этого не изменяется.
Десятки лет напряжение шума приемника измеряли в микровольтах (миллионных долях вольта). Сейчас оказалось более удобным измерять его в градусах шкалы Кельвина. В паспорте приемника так и пишут: температура шумов равна, скажем, 50 градусам по Кельвину. Что же значат слова «температура шумов»? Разве есть горячий и холодный шум? Или, вставив термометр в приемник, можно измерить его шумы?
Дело обстоит значительно проще. Если температура шумов 50 градусов, то, подключив на вход приемника сопротивление, равное сопротивлению его входа, и нагрев его до температуры 50 градусов, мы и получим тот самый вынесенный на вход генератор шума в виде шумящего сопротивления. Он будет создавать в приемнике шумы, равные по величине реальным.
Ожесточенная борьба за снижения температуры шумов приемника привела в последнее время к созданию малошумящих приемников. «Ртутный столбик» термометра приемника упал с температуры 1500–2000 до 20–50 градусов по Кельвину, то есть почти в сто раз. Это достигнуто за счет использования новых принципов усиления и преобразования сигналов и «замораживания» входного каскада приемника до температур, близких к абсолютному нулю.
Один из новых видов усилителей — мазер. Это молекулярный усилитель, который работает на принципах, схожих с работой лазера (мы с ними знакомились в главе второй).
Переходим к врагам внешним. Одним из основных его источников является сумма теплового и синхротронного излучения небесных тел Галактики и Метагалактики.
Это излучение имеет непрерывный спектр, и величина его падает с уменьшением длины волны. Значит, для уменьшения помех, создаваемых небесным фоном, надо работать на предельно коротких волнах. Но к сожалению, уменьшение волны приводит к появлению нового вида шумов — квантовых, которые есть результат дискретной или фотонной структуры потоков излучений.
Эти два фактора приводят к тому, что результирующий шумовой фон неба, о котором мы говорили уже, имеет глубокий минимум.
При волнах короче 3 сантиметров появляются шумы атмосферы. Правда, их можно принципиально исключить, вынося приборы за ее пределы.
Шумовой фон достигает максимума, когда радиотелескопы смотрят на центр Галактики (там максимальная концентрация магнитного поля и релятивистских электронов), и минимума — при направлении на ее полюс.
Как и внутренние шумы приемника, внешние шумы также измеряют градусами Кельвина.
Направим радиотелескоп на центр Галактики. Приемник при этом будем перестраивать по частоте и измерять уровень фона на его выходе. Мы получим кривую, приведенную на рисунке (при направлении на полюс минимум будет еще глубже).
Я надеюсь, что Жан Эффель не обидится, что его создание — черт — приобрело, еще одну специальность — олицетворять злые шумовые силы природы.
Землянам опять повезло. Минимальный чертик хорошо совмещается с радиоокном нашей планеты.
Из кривой следует, что температура фона наименьшая — составляет единицы градусов — в диапазоне волн приблизительно 3–10 сантиметров.
Кроме шумового фона, в радиовселенной много так называемых дискретных источников излучения. Они дают всплески радиоизлучения в отдельных точках неба. Такая помеха попадет в горло приемника, если антенна направлена на этот источник. Тогда уровень внешних помех может резко возрасти (при сильном дискретном источнике). Но это отдельные, редкие точки на небосводе, и их можно в большинстве случаев избежать, изменяя направление антенны или настройку приемника.
Блок-схема системы связи, нарисованная на странице 97, нереальна. В ней действует только сигнал, а помех совсем нет. Учесть же их можно введением в эту схему генераторов помех, которые выбираются так, чтобы создаваемый ими электрический хаос соответствовал реальному в рассматриваемой системе связи.
А нельзя ли перекричать помехи? Подавить этого врага грубой силой? Можно. Но этот путь дает успех при не очень больших расстояниях между передатчиком и приемником. Так, вращая ручку настройки приемника, мы замечаем, что местные радиовещательные станции отлично слышны, а дальние еле-еле и искажаются помехами.
Какое же надо превосходство мощности сигнала над мощностью помех? Оно зависит от ряда факторов: от способа передачи и приема, от скорости передачи, от уровня допустимых искажений — и лежит в пределах от 10 до 1000 раз.
Напомним, что мощность передатчика (или источника помех) есть энергия, излучаемая им за одну секунду. То, что волна любого типа по мере удаления от пославшего источника теряет свою силу, известно всем. Но не все отдают себе отчет, сколь быстро это происходит. Мощность волны падает катастрофически — пропорционально квадрату расстояния. А что это значит, знает, наверное, каждый: при увеличении расстояния в два раза мощность уменьшается лишь в четыре раза, но зато увеличение дальности в 100 раз уже дает уменьшение в 10 тысяч раз!
Легко доказать этот закон. Поместим в центре шара свечу. С увеличением его радиуса R освещенность любой внутренней площадки будет слабеть пропорционально квадрату радиуса. Ведь световая энергия свечи должна распределяться на всю сферу, а ее поверхность растет как R2. То же происходит с мощностью радиоволны.
Это один из печальных законов мироздания, встающих на пути радиоконтакта. Остается утешаться тем, что площадь сферы пропорциональна R2, а не R3.
Тут вспоминается диалог двух пассажиров, ударившихся при резком торможении вагона:
— Не мог уж Ньютон в своем законе сделать силу удара не mV2/2, а просто mV/2.
— Ты лучше благодари его за двойку в знаменателе, все-таки синяк в два раза меньше.
Максимальная мощность излучения передатчиков, реализованная на нашей планете в диапазоне радиоокна, достигла уже десятков мегаватт в импульсном режиме и десятков киловатт при непрерывном излучении.
Но эти мощности не позволяют просто перекричать помехи в космических радиолиниях. Значит, надо перехитрить помехи: принять все другие меры для повышения отношения сигнал/помеха в точке приема, а сам сигнал сделать грубым и малочувствительным к «укусам» помех.