Этюды о Вселенной - Редже Тулио. Страница 36

Смысл энтропии

Примеры, которые мы только что привели, касались превращения энергии упорядоченного движения (электрических зарядов, кинетической энергии движения молота или автомобиля) в тепло, т.е. энергию беспорядочного движения частиц вещества. Во всех случаях мы имели дело с необратимыми процессами: никто еще не видел, чтобы электрическая печь начала вдруг передавать в электросеть свою энергию, охлаждаясь при этом; охлаждая тормоза автомобиля, мы не приведем его в движение и т.д. Все это подтверждает, что очень легко создать беспорядок и очень трудно (или, во всяком случае, требует определенных затрат) создать порядок.

Энтропия, по существу, представляет собой меру этого беспорядка, и, следовательно, при необратимых процессах она всегда растет. При перемешивании горячей воды и холодной ее температура усредняется. Вся энергия распределяется равномерно между молекулами воды. При этом энтропия увеличивается, и мы получаем энергию, более равномерно распределенную и в форме, менее удобной для использования. из таких примеров мы должны извлечь полезный урок. Недостаточно иметь энергию, нужно, чтобы она была в форме, удобной для использования, и, следовательно, не «беспорядочная». Вода в море обладает огромными запасами энергии, которая однако, соответствует беспорядочному движению и которую поэтому нельзя использовать.

Локальное уменьшение энтропии

Существует способ обойти это непрерывное увеличение энтропии, и на нем основана почти вся наша современная техника. Второе начало термодинамики устанавливает общее возрастание энтропии, но вовсе не исключает ее уменьшения в ограниченной области при еще большем увеличении в другом месте. в тепловой электростанции сжигается топливо и производится теплота, которая превращается затем в электрическую энергию, в высшей степени упорядоченную. на самом деле только третья или четвертая часть энергии горения превращается в электричество, в то время как остальная энергия по обыкновению идет на разогрев воды какой-нибудь реки. Итак, за возможность превращать тепло в электричество мы заплатили увеличением энтропии реки. Таким же образом в автомобильном двигателе внутреннего сгорания часть энергии бензина превращается в энергию движения, но гораздо больше ее рассеивается в окружающую среду через радиатор. Итак, общий беспорядок всегда усиливается.

Достаточно оглядеться, чтобы понять, насколько активно человек занимается увеличением энтропии. Почти вся наша деятельность приводит к превращению энергии в формы, все менее приспособленные для использования, и к распределению все более низкой температуры среди все возрастающего количества атомов. Как же мы выживаем в таких условиях?

Энергетическая проблема

Действительно, если вспомнить трудности с арабской нефтью, то возникают сомнения в нашей способности идти и дальше вперед. Человечество создавало развитую передовую технологию, широко и бесконтрольно используя ископаемое горючее и растрачивая при этом заложенную в нем химическую энергию. Эти ископаемые, так же как и ядерное горючее, будут исчерпаны, согласно самым благоприятным прогнозам, не позже чем через 200...300 лет.

Если мы окажемся достаточно везучими или способными, то до конца этого срока в наших лабораториях будет достигнут успех в использовании энергии термоядерного синтеза, при котором водород превращается в гелий. Такой успех позволил бы нам идти вперед практически бесконечно в сравнении с временем прошедшей эволюции человечества. При неудаче в осуществлении «управляемого синтеза» оставалось бы Солнце, в недрах которого широкомасштабный термоядерный синтез происходит естественным образом уже более 5 млрд. лет и, судя по всему, будет происходить еще столько же.

Итак, Солнце производит увеличение энтропии в гораздо более широких масштабах, чем человечество, несмотря на все несомненно успешные усилия, предпринимаемые человеком в деле разбазаривания средств. Так стоит ли нам впадать в уныние? Напротив, мы должны считать себя счастливцами. Ведь свет Солнца представляет собой относительно хорошо организованную форму энергии (она соответствует температуре, достигающей почти 6000°С), непрерывно падающей на Землю. Фотосинтез в растениях приводит к постоянному поглощению и накоплению этой энергии, которая затем частично излучается в пространство в виде инфракрасных лучей, имея гораздо большую энтропию, чем прежде. Таким способом земные организмы создают локальный порядок и продолжают процветать.

Гипотеза Пригожина

Согласно Пригожину, существование жизни на Земле является одним из многих примеров, когда наш враг энтропия может уменьшаться в ограниченной области ценой заметного ее увеличения в другом месте. в своей книге «Великий союз» Пригожин часто ссылается на пример нестабильности Бенара. Обычно, если слить вместе холодную и горячую воду, температура ее начнет выравниваться. Если же нагревать кастрюлю с водой, мы вызовем непрерывный подъем горячей жидкости, тогда как более тяжелая холодная вода будет опускаться вниз. Кроме того, однако, наблюдается выделенное движение конвекционных потоков, препятствующих встрече горячей воды с холодной. Таким образом, происходит разделение горячей и холодной воды и появление локальной упорядоченности. Это происходит за счет энергии газового пламени, которая рассеивается в окружающее пространство, проходя через кастрюлю и вызывая рост энтропии. Мы здесь снова наблюдаем увеличение локального порядка, связанное с увеличением беспорядка в других местах.

Заменив пламя Солнцем, а кастрюлю Землей с ее поразительной смесью химических соединений, мы получим фантастически организованные структуры, к которым как раз относятся живые существа. Согласно Пригожину, жизнь возникла не случайно, а является закономерным следствием, хотя и не единственно возможным, энтропического разбазаривания энергии Солнца или какой-нибудь другой звезды. Так ли это? Некоторые примеры, как, например, вышеприведенный пример с кастрюлей, поддаются строгому анализу. Другие связаны с некоторыми любопытными химическими реакциями Жаботинского. При общем желании понять причину создания столь сложных структур все остается пока на уровне захватывающих гипотез, еще не подвергавшихся сколько-нибудь серьезным проверкам. Поэтому такие гипотезы воспринимаются одобрительно людьми образованными, но не специалистами, в то время как физики относятся к ним с осторожностью.

Глава 4. К портретам ученых

1. Галилео Галилей

Итак, папа римский решил вновь открыть «дело» Галилея. Я предвижу волну полемических статей и экскурсов в историю. Исключениями из хора обычных политико-литературных стенаний должны стать выступления непосредственно заинтересованных кругов: физиков и представителей церкви.

Кем же был Галилей и какое значение должен иметь пересмотр его дела? За редкими исключениями, тщетными были бы поиски категорий людей, хуже физиков информированных в истории науки вообще и в истории Галилея в частности.

Такое положение в данном случае не должно нас удивлять. Мы говорим не о реальном человеке, а имеем дело с человеком-знаменем, с неким символом. Одни объявили Галилея героем движения против учения Аристотеля, знаменосцем науки в борьбе против темных сил религии, и в то же время другие пытались возвести его самого в ранг святого. Однако при ближайшем рассмотрении окажется, что Галилей был прежде всего гениальным человеком, величайшая заслуга которого состояла в открытии эры современной науки и преодолении старого, аристотелева, представления о Вселенной.

Хотя Галилей и стоял у истоков современной физики, он все же не был свободен от некоторых очень живучих предвзятых представлений. Так, он не придавал особого значения законам Кеплера и продолжал считать движение по окружности «совершенным», в чем следовал старым взглядам Аристотеля.

Галилей вовсе не был человеком непогрешимым и всегда корректным и во взаимоотношениях с другими учеными. Так, в своей полемике с иезуитами о происхождении комет он был совершенно не прав, когда с некоторым высокомерием настаивал на том, что речь идет всего лишь о процессах испарения, происходящих в верхних слоях атмосферы. Судя по всему, можно считать установленным, что за несколько месяцев до того, как Галилей официально объявил об обнаружении солнечных пятен, их наблюдал монах из Ингольштадта; поведение Галилея при этом только способствовало усилению ненависти к нему иезуитов.