С думой о Земле - Горьков Владислав Леонидович. Страница 10

Принцип ее действия основан на явлениях, общих для радиотехники и оптики. Так, световые лучи, исходящие от источника, находящегося в фокусе такого зеркала, после отражения от него становятся параллельными. Каждый элемент поверхности параболоида можно рассматривать как источник переизлучения электромагнитной энергии.

А как изменяется интенсивность излучения за пределами раскрыва параболоида? Реальная параболическая антенна излучает энергию во всех направлениях, а вследствие конечных размеров зеркала даже назад. Однако максимум ее приходится в направлении оси. Изменение плотности электромагнитной энергии вне главного лепестка характеризуют так называемые боковые лепестки диаграммы направленности.

При малой длине волны (единицы и десятки сантиметров) любое отклонение формы зеркала от заданной вызывает изменение диаграммы направленности, искажает, расширяет главный и увеличивает боковые лепестки. Поэтому зеркало параболической антенны диаметром в несколько метров изготовляют с точностью до нескольких миллиметров. Кроме того, конструкция его должна быть достаточно жесткой, исключающей деформацию под воздействием ветра, собственной тяжести и динамических нагрузок. Снег, дождь, обледенение зеркала тоже влияют на диаграмму направленности. Чтобы уменьшить их воздействие, а также защитить антенны от ветра, их иногда полностью покрывают колпаками из особого радиопрозрачного материала.

Диаграммы направленности любой антенны при приеме и передаче совпадают. Поэтому в том и другом случае может использоваться одна и та же антенна. При импульсном излучении вследствие разнесения по времени передаваемого и принимаемого сигналов она поочередно подключается к передатчику или приемнику. Чтобы использовать одну и ту же антенну при непрерывном излучение, передаваемый и принимаемый сигналы разносят по частоте. Электромагнитная энергия от передатчика к облучателю и от облучателя к приемнику передается с помощью волноводно-фидерного тракта.

Обеспечивает требуемую направленность параболической антенны при слежении за спутником оператор. С помощью электромеханических устройств он перемещает антенну раздельно в горизонтальной и вертикальной плоскостях. При программном управлении антенна сопрягается с вычислительной машиной. ЭВМ рассчитывает изменение углов в зависимости от времени и управляет антенной, а в автоматическом сопровождении она принимает сигнал и направляет его в замкнутую систему автоматического регулирования.

В космических радиолиниях метрового и нижней части дециметрового диапазонов волн используются спиральные антенны. Они представляют собой проволочные спирали, прикрепленные к металлическим дискам и питаемые через коаксиальный кабель. Его внутренний провод подсоединяется к спирали, а наружная оболочка — к диску, расположенному перпендикулярно оси спирали. При этом на одном диске может быть несколько конических или цилиндрических спиралей.

Направленные свойства спиральной антенны существенно зависят от соотношения диаметра спирали и длины волны. Это отношение обычно равно 0,25–0,45. Максимальное излучение такой антенны направлено вдоль ее оси. Ширина диаграммы направленности составляет несколько градусов. Перемещается антенна оператором или автоматически. Диск спиральной антенны предназначен для ослабления излучения в задней полусфере. У конических спиральных антенн диапазон рабочих частот более широкий, чем у цилиндрических. Спиральные антенны просты в эксплуатации, производство их дешево.

Излучение и прием электромагнитных колебаний на борту спутника осуществляются с помощью простых, надежных антенн рассмотренных выше типов. Применяются также несимметричный штыревой вибратор, рупорные, щелевые, турникетные и линзовые антенны.

В последние годы все больший интерес проявляется к антеннам нового типа — так называемым фазированным антенным решеткам (ФАР). Они представляют собой множество (сотни, тысячи и даже десятки тысяч) элементарных излучателей. Запитывают их последовательно или параллельно через специальные элементы — разветвители, усилители, фазовращатели и коммутаторы. На каждом элементарном излучателе получают требуемую величину и фазу электромагнитного поля. Управляет всеми элементами ЭВМ. Меняя величину и фазу электромагнитного поля на каждом облучателе по заданному закону, можно изменять форму диаграммы направленности ФАР, число и взаимное расположение главных лепестков излучения, перемещать их любым образом в пространстве.

Возможность формирования требуемого распределения электромагнитного поля электрическим способом позволяет делать ФАР практически любой формы, наиболее согласующейся с конструкцией того объекта, на котором предусматривается их установка. Фазированным антенным решеткам принадлежит будущее.

Таким образом, зная, как проходит трасса, расположение зон радиовидимости и наземных средств обеспечения космического полета, можно определить продолжительность связи космического аппарата с каждым КИП. Эти сведения позволяют планировать работу не только КИК, но и бортовой аппаратуры. Так для дистанционного зондирования Земли определяются условия и время съемки. Все эти задачи решают ЭВМ, размещенные в ЦУП и на КИП.

Управление спутниками

Когда речь заходит об управлении космическими аппаратами, обычно прежде всего говорят о динамических операциях — выводе орбитальных станций на монтажную орбиту, сближении и стыковке, спуске транспортных кораблей. Но есть и другая, не менее важная сторона — управление работой бортовыми системами: включение и выключение аппаратуры, поддержание требуемых режимов работы приборов, агрегатов. Именно это и является определяющим для спутников связи, навигации, изучения окружающей среды и природных ресурсов Земли.

Для управления космическими аппаратами разрабатываются команды двух типов. Одни управляют движением спутника, другие — работой его аппаратуры. По своей форме и принципам передачи они идентичны, различаются лишь методами расчета.

Итак, команда из ЦУП поступает по линии связи на КИП, с которого и идет непосредственное управление спутником. Каждая командная радиотехническая станция имеет пульт выдачи команд, программно-временное устройство, аппаратуру кодирования информации, радиопередатчик и антенну.

Вспомните принцип космической радиосвязи. Устойчивой она бывает лишь в пределах прямой радиовидимости. Это значит, что управлять спутниками, находящимися на низких околоземных орбитах, где радиовидимость ограничена несколькими минутами, с помощью команд довольно сложно, а иногда и невозможно. Как, например, управлять работой аппаратуры метеоспутника с помощью команд в акватории Мирового океана? А ведь именно там это крайне необходимо. Вот почему наряду с командами используют и программное управление.

Программу можно представить как совокупность слов, каждое из которых состоит из команд и времени, определяющего момент их исполнения. Различают жесткую и гибкую программы. Первая обычно закладывается в бортовое программно-временное устройство при подготовке спутника к запуску. По радиолинии передается лишь одна команда, по которой и начинает исполняться программа. Такой метод управления наиболее простой и надежный. Однако жесткая программа не может отслеживать изменение обстановки и не поддается коррекции после выведения спутника. Жесткий программник, как его обычно называют, можно сравнить с проигрывателем, в котором без смены пластинки мелодии не изменить. «Сменить мелодию» на борту спутника с жестким программным управлением еще сложнее, ведь на Землю его для этого не вернешь.

Более совершенен метод управления по гибкой программе, которую можно полностью или частично изменить во время сеанса радиосвязи. Здесь тоже есть аналогия, подобная той, что приведена выше. Гибкая программа сравнима с записью на магнитной ленте, которую при желании можно полностью или частично заменить, не вынимая из магнитофона. В гибкой программе команды и время их исполнения рассчитываются в ходе полета спутника и передаются в бортовое программно-временное устройство по радиолинии. Естественно, в этом случае возрастает сложность программно-временного устройства, снижается надежность, но зато реализуются широкие возможности для управления бортовыми системами и, следовательно, повышается эффективность использования космических средств.