Материалы для ювелирных изделий - Куманин Владимир Игоревич. Страница 7
Получение единичных кристаллов достаточно крупного размера – десятки миллиметров и более – довольно сложная техническая задача. Она решена для получения синтетических минералов – ювелирных камней.
Чтобы разобраться в материалах ювелирных изделий, полученных ковкой, штамповкой или методами литья, необходимо привести классификацию ювелирных материалов, поскольку в первую очередь от материала зависит общий вид изделия и его способ изготовления. Поэтому раздел 3.2 будет посвящен основам классификации ювелирных материалов.
3.2. Классификация ювелирных материалов
На рис. 3.Зб приведен классификатор материалов, из которых изготовляются ювелирные изделия. Наибольшее их количество выполняется из сплавов на медной основе и благородных металлов. В меньшей степени используются сплавы на алюминиевой основе и сплавы цинка. Однако для бижутерии, пуговиц, зажимов, пряжек, недорогой домашней утвари, накладок на подарочные папки и оружие и т. п. их значение остается доминирующим. Невысокая стоимость и привлекательный внешний вид, особенно после нанесения декоративных покрытий, обуславливают их широкое применение.
Рис. З.Зб. Классификатор ювелирных материалов.
3.3. Диаграммы состояния ювелирных сплавов
В ювелирной технике применяются сплавы на основе благородных металлов: серебра, золота и платины. Это основные металлы. Для имитации золотых и серебряных сплавов используют некоторые сплавы на основе меди и алюминия. Они применяются только для изготовления дешевых изделий – бижутерии.
В зависимости от состава сплав может иметь различную структуру при комнатной температуре. Структурное состояние сплава, превращения при нагреве и охлаждении описываются диаграммами состояния.
Взаимодействие двух компонентов можно изобразить графически. Такое изображение называется диаграммой состояния или диаграммой равновесия. Диаграммы состояния строятся в координатах состав – температура. Они показывают связь между составом, температурой и фазовым состоянием, структурой сплава. Вид диаграммы состояния зависит от характера взаимодействия компонентов в твердом состоянии.
Для построения диаграммы состояния выбирают отрезок на оси абсцисс, который принимается за 100 % компонента (рис. 3.4). Тогда любая точка на этом отрезке соответствует составу сплава, содержащего х% компонента А и 100 % – х% компонента В. Таким образом, если сплав содержит два компонента, то его состав определяется одной точкой на оси абсцисс. По оси ординат откладывается температура.
Рис. 3.4.
Графическое изображение состава двухкомпонентного сплава.
Между некоторыми металлами, применяемыми в ювелирной технике, образуется неограниченная растворимость в твердом состоянии. К таким системам относятся золото – серебро, золото – медь, платина – иридий. Диаграмма состояния для случая неограниченной растворимости в твердом состоянии показана на рис. 3.5. На диаграмме состояния две линии. Верхняя отделяет область, в которой сплавы находятся в жидком состоянии, т. е. в виде расплава. Эта линия называется «линия ликвидуса». Таким образом, при температурах выше линии ликвидуса все сплавы золота и серебра представляют собой расплавленный металл.
Рис. 3.5. Диаграмма состояния Au – Ag.
Нижняя линия на диаграмме называется «линия солидуса». При температурах ниже линии солидуса все сплавы в этой системе находятся в твердом состоянии. Их структура – твердый раствор золота и серебра. Между линиями ликвидуса и солидуса в сплавах в равновесии находятся две фазы – жидкость и кристаллы твердого раствора.
Кристаллизация сплава любого состава начинается при охлаждении его немного ниже линии ликвидуса. Разность между теоретической и реальной температурой начала кристаллизации называется степенью переохлаждения. В жидкой фазе зарождаются и растут кристаллы твердого раствора. Кристаллизация сплава происходит при понижении температуры и заканчивается при достижении температуры линии солидуса или несколько ниже.
Если скорость охлаждения сплава невелика, то в результате кристаллизации структура сплава представляет собой однородный твердый раствор, состав которого точно отвечает составу сплава.
Если скорость охлаждения достаточно высокая, то твердый раствор оказывается неоднородным. Это связано с особенностью кристаллизации твердых растворов при температурах, лежащих в интервале между линиями ликвидуса и солидуса. Например, при температуре 1000 °C (рис. 3.6) состав образовавшихся кристаллов твердого раствора определяется точкой А.
Рис. 3.6. Определение состава фаз по диаграмме состояния Au – Ag.
И при содержании в сплаве 50 % Au и 50 % Ag, в твердом растворе будет 70 % Ag и 30 % Au. В то же время в жидкой фазе находятся 70 % Au и 30 % Ag (точка В). При изменении температуры состав твердой фазы изменяется по линии солидуса, жидкой – по линии ликвидуса. Таким образом, при охлаждении, т. е. при изменении температуры, состав твердой фазы непрерывно изменяется.
Изменение состава происходит за счет перемещения атомов, т. е. за счет диффузии. В твердых телах подвижность атомов невелика, диффузия происходит значительно медленней, чем в жидкости. Если скорость охлаждения при кристаллизации достаточно велика, то выравнивающая диффузия не успевает произойти и состав твердого раствора оказывается неоднородным. В центральной части зерен, которая образовалась при более высоких температурах, повышенное содержание Ag, в периферийной части – повышенное содержание Au по сравнению с составом сплава. Это явление называется дендритной ликвацией. Чем шире интервал кристаллизации сплава, т. е. чем больше разница между температурами ликвидуса и солидуса, тем больше вероятность такого явления.
Неоднородность зерен сплава по составу – нежелательное явление для ювелирных сплавов. Такие сплавы сильнее корродируют, имеют неоднородные механические свойства и т. д.
Дендритную ликвацию можно устранить, если отжечь сплав при температурах на 50—100 °C ниже линии солидуса.
Диаграмму состояния, характерную для системы золото – серебро, имеют также сплавы системы золото – медь и платина – иридий. Кристаллизация сплавов в этих системах происходит аналогично сплавам золото – серебро.
Если два металла ограниченно растворимы в твердом состоянии, то вид диаграммы состояния изменяется. На рис. 3.7 показана диаграмма состояния медь – серебро. Эти два металла ограниченно растворимы в твердом состоянии. Твердый раствор меди в серебре обозначен а. Растворимость меди в серебре изменяется от 0,2 % при 200 °C до 8,8 % при 779 °C. Это максимальная растворимость. Растворимость серебра в меди (область β-раствора) изменяется от 0 % при 200 °C до 8,0 % при 779 °C.
Рис. 3.7. Диаграмма состояния Ag – Си.
Сплав, содержащий 28 % серебра, называется эвтектическим. Его кристаллизация происходит при постоянной температуре 779 °C. При этом из жидкой фазы кристаллизуются сразу два твердых раствора α и β. Процесс кристаллизации начинается с образования зародышей р-твердого раствора. Состав этих зародышей в равновесных условиях кристаллизации соответствует предельной растворимости серебра в меди, т. е. образующиеся кристаллы содержат всего 8,0 % серебра и 92,0 % меди. Иными словами, из жидкой фазы, которая содержала 28 % меди, образуется твердый объем, содержащий 92 % меди, т. е. медь выходит из жидкой фазы состав которой изменяется в сторону увеличения содержания в ней серебра. Обогащение жидкости серебром стимулирует зарождение кристаллов α-твердого раствора. Они зарождаются на уже имеющихся кристалликах β-фазы, и в дальнейшем оба кристалла α– и β-твердых растворов растут совместно. В результате такой кристаллизации структура сплава состоит из зерен двух видов, двух фаз: α-твердого раствора, содержащего 8,8 % меди и 91,2 % серебра, и β-твердого раствора, содержащего 8,0 % серебра и 92 % меди. Такая механическая смесь двух фаз, образующаяся из жидкости при постоянной температуре и имеющая постоянный состав, называется эвтектикой.