Тени разума. В поисках науки о сознании - Пенроуз Роджер. Страница 10
Еще одно отличие между видами компьютерных систем связано с различием между последовательнойи параллельной архитектурами. Компьютер последовательного действия — это машина, выполняющая вычисления друг за другом, поэтапно, тогда как параллельный компьютер выполняет множество независимых вычислений одновременно, результаты же этих вычислений сводятся вместе лишь по завершении достаточно большого их количества. Кстати, у истоков разработки некоторых параллельных систем стояли все те же теории, описывающие предполагаемые способы функционирования мозга. Здесь следует отметить, что различие между вычислительными машинами последовательного и параллельного действия ни в коей мере не является принципиальным. Параллельное действие всегда можно смоделировать последовательно, хотя, конечно же, существуют некоторые типы задач (весьма немногочисленные), для решения которых эффективнее (в смысле затрат времени на вычисление и т.п.) будет параллельное действие, нежели последовательное. Поскольку в рамках настоящего труда меня занимают, главным образом, принципиальные вопросы, различия между параллельными и последовательными вычислениями не представляются в этом отношении особенно существенными.
1.6. Противоречит ли точка зрения Cтезису Черча—Тьюринга?
Вспомним, что точка зрения Cпредполагает, что обладающий сознанием мозг функционирует таким образом, что его активность не поддается никакому численному моделированию — ни нисходящего, ни восходящего, ни какого-либо другого типа. Те, кто сомневается в истинности C, могут отчасти оправдать свои сомнения тем, что формулировка Cякобы противоречит так называемому тезису Черча(или тезису Черча—Тьюринга) — вернее, тому условию, которое сейчас общепринято обозначать упомянутым термином. В чем же суть тезиса Черча? В первоначальной форме, предложенной американским логиком Алонзо Черчем в 1936 году, этот тезис гласил, что любой процесс, который можно корректно назвать «чисто механическим» математическим процессом, — т.е. любой алгоритмический процесс — может быть реализован в рамках конкретной схемы, открытой самим Черчем и названной им лямбда-исчислением(λ-исчислением) {11} (весьма, надо отметить, изящная и концептуально сдержанная схема; краткое ознакомительное изложение см. в НРК, с. 66-70). Вскоре после этого, в 1936-1937 годах, британский математик Алан Тьюринг нашел свой собственный, гораздо более убедительный способ описания алгоритмических процессов, основанный на функционировании теоретических «вычислительных машин», которые мы сейчас называем машинами Тьюринга. Вслед за Тьюрингом в некоторой степени аналогичную схему разработал американский ученый-логик польского происхождения Эмиль Пост (1936). Далее Черч и Тьюринг независимо друг от друга показали, что исчисление Черча эквивалентно концепции машины Тьюринга (а следовательно, и схеме Поста). Более того, именно этим концепциям Тьюринга в значительной степени обязаны своим появлением на свет современные универсальные компьютеры. Как уже упоминалось, машина Тьюринга по принципу функционирования фактически полностью эквивалентна современному компьютеру, — несколько, впрочем, идеализированному, т.е. обладающему возможностью использовать неограниченный объем памяти. Таким образом получается, что тезис Черча в его первоначальной формулировке всего лишь утверждает, что математическими алгоритмами следует считать как раз те процессы, которые способен выполнить идеализированный современный компьютер — а если учесть общепринятое ныне определениетермина «алгоритм», то такое утверждение и вовсе становится тавтологией. Так что принятие этой формулировки тезиса Черча не влечет за собой никакого противоречия точке зрения C [6].
Вполне вероятно, однако, что сам Тьюринг имел в виду нечто большее: вычислительные возможности любого физического устройства должны (в идеале) быть эквивалентны действию машины Тьюринга. Такое утверждение существенно выходит за рамки того, что изначально подразумевал Черч. При разработке концепции «машины Тьюринга» сам Тьюринг основывался на своих представлениях о том, чего, в принципе, мог бы достичь вычислитель-человек (см. [ 198]). Судя по всему, он полагал, что физическое действие в общем (а под эту категорию подпадает и активность мозга человека) всегда можно свести к какой-либо разновидности действия машины Тьюринга. Быть может, это утверждение (физическое) следует называть «тезисом Тьюринга» — для того чтобы отличать его от оригинального «тезиса Черча», утверждения чисто математического, которому никоим образом не противоречит C. Именно такой терминологии я намерен придерживаться далее в этой книге. Соответственно, точка зрения Cпротиворечит в этом случае тезису Тьюринга, а вовсе не тезису Черча.
1.7. Хаос
В последние годы ученые проявляют огромный интерес к математическому феномену, известному под названием «хаос», — феномену, в рамках которого физические системы оказываются способными на якобы аномальное и непредсказуемое поведение (рис. 1.1). Образует ли феномен хаоса необходимую невычислимую физическую основу для такой точки зрения, как C?
Рис. 1.1. Аттрактор Лоренца — один из первых примеров хаотической системы. Следуя линиям, мы переходим от левого лепестка аттрактора к правому и обратно произвольным, на первый взгляд, образом; то, в каком именно лепестке мы оказываемся в тот или иной момент времени, существенно зависит от нашей исходной точки. При этом кривая описывается простым математическим (дифференциальным) уравнением.
Хаотические системы— это динамически развивающиеся физические системы, математические модели таких физических систем или же просто математические модели, не описывающие никакой реальной физической системы и интересные сами по себе; характерно то, что будущее поведение такой системы чрезвычайно сильно зависит от ее начального состояния, причем определяющими могут оказаться самые незначительные факторы. Хотя обыкновенные хаотические системы являются полностью детерминированными и вычислительными, на деле может показаться, что в их поведении ничего детерминированного нет и никогда не было. Это происходит потому, что для сколько-нибудь надежного детерминистического предсказания будущего поведения системы необходимо знать ее начальное состояние с такой точностью, которая может оказаться просто недостижимой не только для тех измерительных средств, которыми мы располагаем, но также и для тех, которые мы только можем вообразить.
В этой связи чаще всего вспоминают о подробных долгосрочных прогнозах погоды. Законы, управляющие движением молекул воздуха, а также другими физическими величинами, которые могут оказаться релевантными для определения будущей погоды, хорошо известны. Однако реальные синоптические ситуации, которые могут возникнуть всего через несколько дней после предсказания, настолько тонко зависят от начальных условий, что нет никакой возможности измерить эти условия достаточно точно для того, чтобы дать хоть сколько-нибудь надежный прогноз. Безусловно, количество параметров, которые необходимо ввести в подобное вычисление, огромно; поэтому, быть может, и нет ничего удивительного в том, что в данном случае предсказание может оказаться на практике просто невозможным.
С другой стороны, подобное — так называемое хаотическое — поведение может иметь место и в случае очень простых систем; примером тому служат системы, состоящие из малого количества частиц. Вообразите, что от вас требуется загнать в лузу бильярдный шар Е, расположенный пятым в некоторой извилистой [7]и очень растянутой цепочке шаров А, В, С, D и Е; вам нужно ударить кием по шару А так, чтобы тот ударил шар В, который, в свою очередь, ударил бы шар С, который ударил бы шар D, который ударил бы шар Е, который, наконец, попал бы в лузу. В общем случае необходимая для этого точность значительно превышает способности любого профессионального игрока в бильярд. Если бы цепочка состояла из 20 шаров, то тогда — даже допустив, что эти шары представляют собой идеально упругие точные сферы, — задача загнать в лузу последний шар оказалась бы не под силу и самому точному механизму из всех доступных современной технологии. Поведение последних шаров цепочки было бы, в сущности, случайным, несмотря на то, что управляющие поведением шаров ньютоновы законы математически абсолютно детерминированы и, в принципе, эффективно вычислимы. Никакое вычисление не смогло бы предсказать реальное поведение последних шаров цепочки просто потому, что нет никакой возможности добиться достаточно точного определения реального начального положения и скорости движения кия или положений первых шаров цепочки. Более того, даже самые незначительные внешние воздействия, вроде дыхания человека в соседнем городе, могут нарушить эту точность до такой степени, которая полностью обесценит результаты любого подобного вычисления.