Тени разума. В поисках науки о сознании - Пенроуз Роджер. Страница 121
Общая альтернатива этой квантовомеханической точке зрения заключается в предположении, что вектор состояния дает-таки строгое математическое описание реального квантового мира — мира, эволюционирующего по чрезвычайно точным законам, хотя, возможно, и не в полном соответствии с математическими правилами, задаваемыми уравнениями квантовой теории. Отсюда, как мне представляется, открываются два основных пути. Одни ученые полагают, что процедура Uисчерпывающе описывает все, что связано с эволюцией квантового состояния. Процедура же R, соответственно, рассматривается как своего рода иллюзия, условность или аппроксимация, но ни в коем случаене как часть действительнойэволюции реальности, описываемой квантовым состоянием. Такое мнение, на мой взгляд, ведет в направлении так называемой концепции множественности миров, или интерпретации Эверетта {73} . Об этой концепции мы поподробнее поговорим буквально через минуту. Другие — как раз те, кто принимает квантовый формализм в наибольшей степени «всерьез», — уверены, что обепроцедуры, как U, так и R, представляют (с достаточно большой степенью точности) действительноефизическое поведение физически реального, описываемого вектором состояния, квантового/классического мира. Однако если принимать квантовый формализм настолько всерьез, становится очень нелегко искренне верить в то, что существующая квантовая теория целиком и полностью верна на всех уровнях. Взять хотя бы то, что процедура R, в ее теперешнем определении, противоречит многим свойствам процедуры U, в частности, линейностипоследней. В этом смысле, разумеется, продолжать и далее «вправду верить в квантовую механику» невозможно. В последующих параграфах мы обсудим упомянутые точки зрения более основательно.
6.2. О множественности миров
Попробуем для начала выяснить, насколько далеко мы сможем уйти, следуя первым из «реалистических» путей — тому, что ведет в конечном счете к представлению о существовании «множественных» миров. За истинное описание реальности здесь принимается вектор состояния, эволюционирующий исключительно под действием процедуры U. Отсюда неизбежно следует, что законам квантовой линейной суперпозиции должны подчиняться и объекты классического уровня (такие, как бильярдные шары или даже люди). Можно предположить, что никаких серьезных проблем в связи с этим возникнуть не должно, поскольку такие суперпозиции состояний на классическом уровне — явление чрезвычайно редкое, и это еще слабо сказано. Проблема, однако, есть и связана она с линейностьюэволюции U. Под действием Uвесовые коэффициенты состояний в суперпозиции всегда остаются одинаковыми, вне зависимости от того, какое количество вещества участвует в процессе. Сама по себе процедура Uне способна, если можно так выразиться, «разделить» суперпозицию состояний только потому, что система выросла в размерах или усложнилась. Суперпозиции при этом отнюдь не проявляют тенденции к «исчезновению» при переходе на классический уровень, в результате чего выраженные суперпозиции состояний классических объектов должны стать не менее распространенным феноменом, нежели суперпозиции квантовых состояний. Отсюда неизбежно следует вопрос: почему в таком случае мы, воспринимая мир классических объектов, не сталкиваемся с такими макроскопическими суперпозициями альтернативных состояний ежедневно?
У приверженцев концепции множественности миров имеется на этот счет объяснение. Попробуем в нем разобраться. Представим себе ситуацию, подобную той, что мы рассматривали в §5.17, — детектор фотонов, описываемый состоянием | Ψ〉, оказывается на пути фотона, находящегося в суперпозиции состояний | α〉 + | β〉, причем | α〉 активирует детектор, | β〉 же оставляет все как есть. (Возможно, фотон, испущенный некоторым источником, успел по пути встретиться с полупрозрачным зеркалом, и состояния | α〉 и | β〉 описывают, соответственно, пропущенную и отраженную части общего состояния фотона.) Мы здесь не говорим о применимости концепции вектора состояния к объектам классического уровня (весь детектор целиком), так как в рамках данной точки зрения векторы состояния являются точными представлениями реальности на всех ее уровнях. Таким образом, состояние | Ψ〉 может описывать весь детектор целиком, а не только лишь некоторые квантовые его элементы, первыми встречающие фотон, как было в §5.17. Отметим, что, как и в §5.17, после собственно момента столкновения состояния детектора и фотона эволюционируют из произведения | Ψ〉(| α〉 + | β〉) в сцепленное состояние
| Ψ Д〉 + | Ψ Н〉| β'〉.
Реальностьописывается теперь вот этим вот сцепленным состоянием, рассматриваемым как единое целое. Мы не говорим: « либодетектор зарегистрировал и поглотил фотон (состояние | Ψ Д〉), либо детектор фотона не зарегистрировал, и фотон остался свободным (состояние | Ψ Н〉| β'〉)». Вместо этого мы говорим: « обеальтернативы сосуществуют в суперпозиции, как часть всеобщей реальности, в которой всетакие суперпозиции сохраняются». Можно распространить ситуацию и вообразить себе экспериментатора-человека, который разглядывает детектор с целью выяснить, зарегистрировал ли тот прибытие фотона. Прежде чем обратить свой взор к детектору, человек также должен был пребывать в некотором квантовом состоянии, скажем, | Σ〉; таким образом, мы получаем на данном этапе следующее совокупное «произведение» состояний:
| Σ〉(| Ψ Д〉 + | Ψ Н〉| β'〉).
Далее, изучив состояние детектора, наблюдатель каким-то образом воспринимает, что либо детектор зарегистрировал и поглотил фотон (состояние | Σ Д〉), либо детектор фотона не зарегистрировал (ортогональное состояние | Σ Н〉)- Если допустить, что наблюдатель не взаимодействует с детектором после наблюдения, то ситуация описывается следующим вектором состояния:
| Σ Д〉| Ψ' Д 〉 + | Σ Н〉| Ψ' Н 〉| β''〉.
То есть теперь у нас имеется два различных (ортогональных) состояния наблюдателя, каждое из которых вносит свой вклад в общее состояние системы. Согласно первому, наблюдатель находится в состоянии восприятия регистрации детектором прибытия фотона; это состояние сопровождается состоянием детектора, при котором фотон действительно регистрируется. Согласно же второму, наблюдатель находится в состоянии восприятия отсутствия регистрации детектором прибытия фотона; это состояние сопровождается состоянием детектора, при котором фотон не регистрируется, и состоянием фотона, свободно улетающего прочь. При этом, в соответствии с концепцией множественности миров, в рамках одного общего состояния сосуществуют различные экземпляры (варианты, копии) «Я» наблюдателя, располагающие различным опытом восприятия окружающего мира. Действительное состояние мира, окружающего каждый экземпляр, будет соответствовать опыту восприятия, которым этот экземпляр располагает.
Это представление можно обобщить на более «реалистичные» физические ситуации, где одновременно сосуществуют уже не два возможных варианта развития событий, как в приведенном примере, а огромные количества различных квантовых альтернатив, непрерывно возникающих на протяжении всей истории Вселенной. Таким образом, общее состояние Вселенной действительно объединяет в себе множество различных «миров», а любой наблюдатель-человек существует во множестве различных экземпляров сразу. Каждый экземпляр воспринимает тот мир, который не противоречит его собственному опыту восприятия, при этом нас с вами хотят убедить в том, что для построения удовлетворительной теории ничего больше и не нужно. Процедура R, согласно такой точке зрения, оказывается иллюзией, возникающей как следствие некоторых особенностей восприятия квантовосцепленного мира макроскопическим наблюдателем.