Тени разума. В поисках науки о сознании - Пенроуз Роджер. Страница 94
Как бы то ни было, предсказания физической теории (а ныне — квантовой теории) блестяще подтверждаются. Наблюдаемая экспериментально взаимосвязь между частотой и интенсивностью излучения на этой частоте весьма точно описывается предложенной Планком формулой. Хотя в рамках настоящего рассуждения нас, вообще говоря, интересует вычислительная природа классическойтеории, я не в силах устоять перед искушением привести пример наиболее совершенного (на сегодняшний день и насколько мне известно) согласия между данными наблюдений и результатами вычислений по формуле Планка. Этот пример можно также рассматривать как превосходное экспериментальное подтверждение стандартной модели Большого Взрыва — в том, что имеет отношение к температурным условиям в новоиспеченной Вселенной в первые несколько минут ее существования. На рис. 4.12маленькими прямоугольниками показаны экспериментальные значения интенсивности космического фонового излучения на различных частотах (полученные с помощью исследовательского спутника COBE [31]); непрерывная кривая построена в соответствии с формулой Планка, при этом за температуру фонового излучения взято значение 2,735 (±0,06) К (наилучшее эмпирическое значение). Точность совпадения кривых поражает воображение.
Рис. 4.12. Точное согласие между результатами наблюдений, полученными со спутника СОВЕ, и теоретическими результатами в предположении «тепловой» природы излучения Большого Взрыва.
Приведенные выше примеры взяты из астрофизики — области, особое внимание в которой уделяется именно сравнению результатов громоздких вычислений с наблюдаемым поведением существующих в реальном мире систем. Прямые эксперименты в астрофизике невозможны, поэтому подтверждения теориям приходится искать путем сравнения рассчитанного (исходя из стандартных физических законов) поведения той или иной системы в той или иной предполагаемой ситуации с данными, полученными с помощью сложных наблюдательных процедур. (Наблюдения осуществляются с поверхности Земли, с аэростатов или других летательных аппаратов, размещенных в верхних слоях атмосферы, с ракет или искусственных спутников; при этом наряду с обычными оптическими телескопами применяются и самые разнообразные детекторы прочих сигналов.) Все эти вычисления, впрочем, не имеют непосредственного отношения к цели наших поисков, и я упомянул о них, главным образом, как о замечательно наглядных примерах того, насколько продуктивным инструментом исследования природы могут оказаться полные и точные вычисления, насколько хорошо вычислительные процедуры способны в действительности подражать природе. Нам же стоит уделить более пристальное внимание исследованиям биологических систем, так как именно в поведении биологических систем (а точнее — согласно выводам, к которым мы пришли в первой части, — в поведении осознающего себя мозга) следует искать возможные и необходимые проявления невычислимой физической активности.
Нет никаких сомнений в том, что вычислительные модели играют весьма важную роль в моделировании биологических систем, однако сами эти системы очевидно гораздо более сложны, чем те, с которыми имеет дело астрофизика, — соответственно, более сложной оказывается и задача построения действительно надежной модели биологической системы. Количество систем, достаточно «чистых» для того, чтобы получить при моделировании сколько-нибудь «приличную» точность, очень невелико. Мы в состоянии построить достаточно эффективные модели сравнительно простых систем — таких, например, как кровоток в сосудах различных типов или, скажем, передача сигналов по нервным волокнам (хотя в последнем случае возникают некоторые сомнения относительно того, допустимо ли рассматривать данную систему в рамках исключительно классической физики, поскольку важную роль здесь играют, наряду с физическими, и химические процессы).
Химические процессы напрямую обусловлены квантовыми эффектами, поэтому при исследовании поведения, связанного с химической активностью, мы, строго говоря, выходим за рамки классической физики. Несмотря на это, очень часто подобные «квантово обусловленные» процессы рассматриваются с позиций существенно классических. И хотя формально такой подход корректным не является, в большинстве случаев мы интуитивно предполагаем, что всевозможные тонкие квантовые эффекты (помимо тех, что «официально» учитываются стандартными правилами и законами химии, классической физики и геометрии) серьезной роли здесь не играют. С другой стороны, мне думается, что при всей разумности и даже беспроигрышности такого предположения в отношении моделирования многих биологических систем (сюда, пожалуй, можно включить и распространение нервных импульсов) все же несколько рискованно делать общие выводы о более сложных биологических процессах, опираясь лишь на их якобы полностью классическую природу, особенно если речь заходит о таких сложнейших системах, как, например, человеческий мозг. Если мы намерены прийти к сколько-нибудь общим заключениям о теоретической возможности достоверной вычислительной модели мозга, нам необходимо прежде как-то разобраться с «загадками» квантовой теории.
Именно этим мы и займемся в двух последующих главах — по крайней мере, попытаемся по мере возможности. Там, где, как мне представляется, разобраться в причудах квантовой теории невозможно в принципе, я покажу, каким образом следует модифицировать саму теорию с тем, чтобы привести ее в вид, более соответствующий нашим представлениям о правдоподобной картине мира.
5. Структура квантового мира
5.1. Квантовая теория: головоломки и парадоксы
Квантовая теория дает нам превосходное описание физической реальности на микроскопическом уровне, однако полна при этом тайн и загадок. Нет никакого сомнения: разобраться в том, как именно работает эта теория, чрезвычайно трудно; еще труднее отыскать какой-либо смысл в той «физической реальности» (или нереальности), которая, как утверждает квантовая теория, и составляет основу нашего мира. На первый, неискушенный, взгляд может показаться, что эта теория способствует формированию мировоззрения, которое многие (включая и меня) находят в высшей степени неудовлетворительным. В лучшем случае, буквально понимая все положения и определения теории, мы получаем, мягко говоря, очень странную картину мира. В худшем — столь же буквально воспринимая заявления некоторых из наиболее знаменитых приверженцев квантовой теории, никакой картины мира мы не получаем вовсе, а та, что была, рассыпается на глазах.
Я думаю, все те загадки, что ставит перед нами квантовая теория, можно четко разделить на два совершенно различных класса. Одни я называю загадками-головоломками, или Z- загадками(от слова pu zzle [32]). К этому классу я отношу те квантовые истины об окружающем нас мире, которые действительно способны кого угодно привести в замешательство и заставляют изрядно поломать над собой голову — и в то же время находят непосредственное экспериментальное подтверждение. Сюда же можно включить и те общие предсказания квантовой теории, которые не подтверждены экспериментально, но — ввиду уже подтвержденного — очень похожи на правду. Среди наиболее поразительных Z-загадок упомяну те, что известны под общим названием феномены Эйнштейна—Подольского—Розена(или ЭПР-феномены; подробнее о них мы поговорим позднее, см. §§5.4, 6.5). Второй класс составляют квантовые загадки, которые я называю загадками-парадоксами, или X- загадками(от слова parado x [33]). Согласно квантовому формализму, эти утверждения о мире вроде бы должны быть истинными, однако они настолько невероятны и парадоксальны, что мы просто не можем в них поверить, не можем признать их «действительно» истинными. Именно эти загадки и не дают нам принять предлагаемый формализм всерьез, препятствуют образованию на рассматриваемом уровне сколько-нибудь достоверной картины мира. Самая знаменитая X-загадка — парадокс шрёдингеровой кошки, в рамках которого, по всей видимости, утверждается, что макроскопические объекты (например, кошки) способны существовать в двух совершенно различных состояниях одновременно (этакое подвешенное состояние, в котором кошка и «жива», и «мертва» сразу). К подобным парадоксам мы еще вернемся в §6.6(см. также §6.9, рис. 6.3, и НРК, с. 290-293).