Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер. Страница 109
Теперь, чтобы точно сформулировать понятие энтропии, вернемся к идее фазового пространства, введенного в главе 5. Напомним, что фазовое пространство системы имеет, как правило, гигантское число измерений, а каждая его точка изображает с максимальной детализацией мгновенную конфигурацию системы. Подчеркнем, что «одна-единственная» точка фазового пространства определяет одновременно положения и импульсы всех отдельных частиц, составляющих рассматриваемую физическую систему. Все, что нам необходимо сейчас для определения энтропии, это сгруппировать вместе все те микроскопические состояния, которые выглядят совершенно одинаковыми с точки зрения их явных (т. е. макроскопических) свойств. Другими словами, нам необходимо разбить наше фазовое пространство на области (рис. 7.3),
Рис. 7.3. Гранулирование фазового пространства на области, соответствующие макроскопически неотличимым состояниям. Энтропия пропорциональна логарифму фазового объема
в каждой из которых различные точки изображают физические системы, отличающиеся на микроскопическом уровне расположением и скоростями частиц, но которые при этом совершенно неразличимы с точки зрения макроскопического наблюдателя, для которого все точки любой такой конкретной области будут описывать одну и ту же физическую систему. Подобное разбиение фазового пространства на области называется гранулированием фазового пространства.
После такого группирования некоторые из областей могут приобрести подавляюще огромные размеры по сравнению с другими областями. Рассмотрим, к примеру, фазовое пространство газа, заключенного в ящике. Наибольшая область фазового пространства будет приходиться на состояния, в которых частицы газа практически равномерно распределены по ящику с некоторым характерным распределением скоростей, обеспечивающим однородные давление и температуру. Это характерное распределение, в некотором смысле наиболее случайное из всех возможных, называется распределением Максвелла — по имени Джеймса Клерка Максвелла, которого мы уже упоминали ранее. В этом случае про газ говорят, что он находится в состоянии теплового равновесия. Подавляющая часть точек всего фазового пространства соответствует этому тепловому равновесию, и эти точки изображают всевозможные микроскопические значения координат и скоростей отдельных частиц, которые совместимы с состоянием теплового равновесия. Эта огромная часть является, конечно, только одной из многих областей нашего фазового пространства — но она оказывается (существенно) большей всех других областей, занимая практически все фазовое пространство! Рассмотрим теперь другое возможное состояние этого газа, скажем, такое, в котором весь газ собран в одном из углов ящика. В этом случае мы будем опять иметь целое множество различных микроскопических состояний, каждое из которых описывает газ сосредоточенным в углу ящика. Все эти состояния макроскопически неразличимы, и изображающие их точки фазового пространства заполняют в нем свою область. Однако объем этой области оказывается намного меньшим объема области для состояний теплового равновесия — примерно в
раз (если ящик — это метровый куб, содержащий воздух при нормальных условиях, а область в углу — сантиметровый кубик)!
Чтобы оценить различия в фазовых объемах, рассмотрим упрощенную ситуацию, в которой некоторое количество шаров распределено по большому числу ячеек. Предположим, что каждая ячейка может либо быть пустой, либо содержать один шар. Шары будут моделировать молекулы газа, а ячейки — различные положения молекул в ящике. Выделим небольшое подмножество ячеек, которое будем называть особым; оно будет соответствовать положению молекул газа в углу ящика. Для определенности условимся, что ровно 1/10 часть всех ячеек особая — т. е. в случае, когда имеется n особых ячеек, не особых будет ровно 9n (рис. 7.4).
Рис. 7.4. Модель газа в ящике: некоторое количество шаров распределено по значительно большему числу ячеек. Одна десятая часть ячеек отмечены как особые. Эти ячейки выделены в левом верхнем углу
Мы хотим теперь случайным образом распределить m шаров среди всех ячеек и найти вероятность того, что все шары окажутся в особых ячейках. В случае, когда имеется только один шар и десять ячеек (т. е. имеется только одна особая ячейка), эта вероятность, очевидно, равна одной десятой. Тот же результат получится в случае одного шара и любого числа 10n ячеек (т. е. в случае n особых ячеек). Таким образом, для газа, состоящего только из одного атома, особая область, соответствующая «газу, собранному в углу ящика», будет иметь фазовый объем, составляющий лишь одну десятую всего объема «фазового пространства». Однако, если мы увеличим число шаров, вероятность того, что все они соберутся в особых ячейках, существенно понизится. Скажем, для двух шаров с двадцатью ячейками (две из которых особые) (m = 2, n = 2) [170], вероятность равна 1/190; в случае ста ячеек (среди них — десять особых) (m = 2, n = 10) вероятность равна 1/110; а при неограниченном увеличении числа ячеек с сохранением доли особых вероятность будет стремиться к 1/100.
Таким образом, в случае газа из двух атомов фазовый объем особой области составляет только одну сотую часть всего «фазового пространства». Для трех шаров и тридцати ячеек (m = 3, n = 3), он будет составлять 1/4060 всего фазового объема, а в пределе бесконечного числа ячеек — 1/1000 — т. е. для газа из трех атомов объем особой части будет составлять одну тысячную объема всего «фазового пространства». Для четырех шаров в пределе бесконечного числа ячеек вероятность становится равной 1/10000. Для пяти шаров — 1/100 000 и т. д. Для m шаров в пределе бесконечного числа ячеек вероятность стремится к 1/10m; т. е. для «газа» из m атомов фазовый объем особой области составляет только 1/10m от всего «фазового объема». (Этот результат остается справедливым, если учесть также и импульсы.)
Мы можем применить теперь те же оценки к нашей ситуации с реальным газом в ящике, только в этом случае для особой области нам нужно вместо одной десятой взять одну миллионную (1/1000000) от общего объема ящика (т. е. отношение объемов одного кубического сантиметра и одного кубического метра). В результате, вместо значения 1/10m для вероятности обнаружить все частицы газа в особой области, мы получим 1/1 000000m, т. е. 1/106m. Для воздуха, взятого при нормальных условиях, в нашем ящике находилось бы около 1025 молекул, поэтому мы принимаем m = 1025. Таким образом, особая область фазового пространства, представляющая состояния, в которых весь газ сосредоточен в углу ящика, составляет только
1/1060 000 000 000 000 000 000 000 000
часть всего фазового пространства!