Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер. Страница 41
Почему мы должны принимать доказательства Геделя и Тьюринга и в то же время сбрасывать со счетов рассуждения, ведущие к парадоксу Рассела? Первые являются более ясными и безупречными с точки зрения математики, тогда как парадокс Рассела строится на более туманных рассуждениях об «огромных» множествах. Но нужно признать, что различия здесь не настолько очевидны, как нам хотелось бы. Попытка придать этим различиям ясность была лейтмотивом всей идеи формализма. Доказательство Геделя, с одной стороны, показывает, что строгий формальный подход не выдерживает критики, но с другой стороны, оно не приводит нас к абсолютно надежной альтернативе. По-моему, этот вопрос до сих пор не разрешен. Процедура, используемая в современной математике с целью избежать рассуждений, вовлекающих в рассмотрение «огромные» множества и приводящих к парадоксу Рассела, не является полностью удовлетворительной [76]. Более того, она, как правило, формулируется в чисто формалистских терминах — или же в терминах, которые не дают нам полной уверенности, что в результате их использования не возникнет противоречий.
Как бы там ни было, мне кажется, что из доказательства Геделя следует с очевидностью, что понятие математической истины не может быть заключено ни в. одну из формальных систем. Математическая истина выходит за рамки любого формализма. Возможно, это ясно даже без теоремы Геделя. Иначе как бы мы решали, какие аксиомы и правила вывода брать в расчет при построении формальной системы? Нашим руководством в принятии такого решения должно всегда служить интуитивное понимание о том, что является «самоочевидно верным» с учетом «смысловых значений» символов системы. Как нам решить, какие формальные системы стоит использовать (в соответствии с нашим интуитивным ощущением «самоочевидности» и «смысла»), а какие — нет? Понятие «внутренней непротиворечивости» явно не подходит для этой цели. Можно иметь много внутренне непротиворечивых систем, которые «бессмысленны» с точки зрения их практического использования, в которых аксиомы и правила вывода имеют ложные в нашем понимании значения или же не имеют никаких. «Самоочевидность» и «смысл» — это понятия, которые потребовались бы даже без теоремы Геделя.
Однако, без этой теоремы могло бы сложиться впечатление, что интуитивные понятия «самоочевидность» и «смысл» могли бы быть использованы только в самом начале раз и навсегда, просто чтобы изначально задать формальную систему, а затем мы могли бы отказаться от них при построении строгого математического доказательства для определения истины. Тогда, в соответствии с формалистскими воззрениями, эти «расплывчатые» интуитивные понятия задействовались бы только в «предварительных» размышлениях математиков, направленных на отыскание подходящего формального доказательства; а потом, когда дело дойдет до определения математической истины, они уже не играли бы никакой роли. Теорема Геделя демонстрирует, что такой подход в действительности не является логически состоятельным в рамках фундаментальной философии математики. Понятие математической истины выходит за пределы всей теории формализма. В этом понятии есть нечто абсолютное и «данное свыше». И это как раз то, о чем трактует математический платонизм, обсуждаемый в конце предыдущей главы. Всякая формальная система имеет свойство сиюминутности и «человеко-зависимости». Такие системы, безусловно, играют очень важную роль в математических рассуждениях, но они могут указывать только частично верное (или приблизительное) направление к истине. Настоящая математическая истина выходит за пределы сотворенного человеком.
Платонизм или интуиционизм?
Я указал две противостоящие друг другу школы математической философии, решительно причисляя себя более к платонистскому, нежели к формалистскому воззрению. В действительности же я применил довольно упрощенный подход при их разделении. Существует множество тонкостей, которые можно было бы принять в расчет. Например, в рамках платонизма можно поставить вопрос о том, существуют ли в реальности объекты математической мысли или это только лишь понятие «математической истины», которое является абсолютным. Я решил не обсуждать здесь подобные различия. В моем представлении абсолютность математической истины и платонистское существование математических понятий, по существу, тождественны. «Существование», которое должно быть приписано множеству Мандельброта, к примеру, есть свойство его абсолютной природы. Принадлежит ли точка плоскости Аргана множеству Мандельброта или нет — вопрос абсолютный, не зависящий от математика или компьютера, которые его исследуют. Эта «независимость-от-математика» множества Мандельброта и обеспечивает ему платонистское существование. Более того, наиболее тонкие детали этого множества лежат за пределами того, что можно достигнуть с помощью компьютера. Эти устройства способны только аппроксимировать структуры, имеющие свое, более глубокое и «не зависящее-от-компьютера», существование. Я, однако, готов согласиться с тем, что имеются и прочие разумные точки зрения, с которых можно исследовать этот вопрос. Но здесь нам нет необходимости придавать значение этим различиям.
Есть также отличие в том, насколько далеко в своем платонизме готов зайти человек, провозглашающий свою принадлежность к этой школе. Сам Гедель был глубоко убежденным платонистом. Математические выражения, которые я до сих пор рассматривал, являют собой довольно «мягкие» примеры того, что может встретиться в этом направлении! [77]. Вполне возможны и более «запутанные» выражения, особенно в теории множеств. Когда рассматриваются все мыслимые ответвления этой теории, то порой возникают множества столь громадные и причудливо сконструированные, что даже такой весьма убежденный платонист, как я, может начать сомневаться в абсолютности их существования (или, напротив, несуществования) [78]. Может наступить момент, когда определения множеств становятся настолько сложными и концептуально шаткими, что вопрос об истинности или ложности относящихся к ним математических выражений становится скорее субъективным и зависящим от мнения исследователя, нежели «ниспосланным свыше». Готов ли иной математик безоглядно следовать вместе с Геделем путем платонизма, провозглашая истинность или ложность математических выражений, оперирующих подобными огромными множествами, всегда абсолютными (или «платонистскими») по своей природе; или же он, не заходя слишком далеко, будет говорить об абсолютности этих понятий лишь в том случае, если множества окажутся не слишком велики и довольно конструктивны. Ответ на этот вопрос не имеет большого отношения к нашей дискуссии. Множества (конечные или бесконечные), которые будут иметь для нас значение, по меркам вышеупомянутых множеств выглядят до смешного маленькими! Так что различия между разными платонистскими течениями нас волновать не должны.
Имеются, однако, и иные точки зрения в математике, такие как интуиционизм (и финитизм), которые, впадая в противоположную крайность, отказываются признавать существование каких бы то ни было бесконечных множеств [79]. Интуиционизм был основан в 1924 году датским математиком Лейтзеном Э. Брауэром как альтернативный ответ — отличный от предлагаемого формализмом — на парадоксы (типа расселовского), которые могут возникать там, где бесконечные множества используются слишком вольно в математических рассуждениях. Зачатки этого подхода прослеживаются еще во времена Аристотеля, который, будучи учеником Платона, тем не менее отвергал его взгляды на абсолютное существование математических сущностей и возможность рассмотрения бесконечных множеств. Согласно интуиционизму, существование множества (бесконечного, равно как, впрочем, и конечного) не может признаваться как свойство, изначально ему присущее, а только лишь как функция правил, по которым оно организовано.