Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер. Страница 57

Позвольте мне выделить всего лишь четыре наиболее важные физические идеи, введенные Галилеем. Первая идея Галилея заключалась в том, что сила, действующая на тела, определяет ускорение, а не скорость. Что в действительности означают термины «ускорение» и «скорость»? Скорость частицы — или какой-нибудь точки тела — это темп изменения во времени положения этой частицы или точки. Скорость обычно принято считать векторной величиной, иначе говоря, необходимо принимать во внимание не только величину, но и направление скорости (в противном случае мы используем термин «величина скорости», см. рис. 5.4).

Новый ум короля: О компьютерах, мышлении и законах физики - i_077.png

Рис. 5.4. Скорость, величина

скорости и ускорение

Ускорение (также векторная величина) — это темп изменения, скорости во времени. Таким образом, ускорение в действительности есть скорость изменения скорости изменения положения во времени! (Древним было трудно понять сущность понятия «ускорение», так как у них не было адекватных «часов», и они не располагали соответствующими математическими идеями относительно «темпа изменения».) Галилей установил, что сила, приложенная к телу (в случае, исследуемом Галилеем — сила тяжести), управляет ускорением этого тела, но не управляет непосредственно его скоростью, как полагали древние, например, Аристотель.

В частности, в отсутствие приложенной к телу силы его скорость постоянна. Следовательно, неизменяемое движение тела по прямой есть результат отсутствия силы (первый закон движения Ньютона).

Тела в свободном движении продолжают сохранять состояние равномерного прямолинейного движения, и для того, чтобы они пребывали в этом состоянии, никакой силы не требуется. Действительно, одно из следствий из выведенных Галилеем и Ньютоном законов движения состояло в том, что равномерное прямолинейное движение физически полностью неотличимо от состояния покоя (т. е. отсутствия движения): не существует локального способа, позволяющего отличить равномерное прямолинейное движение от покоя! Галилей особенно четко сформулировал это утверждение (даже более четко, чем Ньютон) и дал ему весьма наглядное описание, использовав образ корабля в море (см. Дрэйк [1953], с. 186–187):

«Закройтесь вместе с вашим приятелем в кают-компании под палубой большого судна, прихватив с собой мух, бабочек и каких-нибудь других мелких летающих существ. Возьмите также с собой большой сосуд с водой, в котором бы плавала рыбка; подвесьте бутылку, из которой вода капля за каплей вытекала бы в подставленный снизу широкий сосуд. Пока судно будет стоять, внимательно присмотритесь к тому, как мелкие твари летают в каюте с одинаковой быстротой по всем направлениям. Рыбка также плавает одинаково охотно по всем направлениям; капли из бутылки падают в подставленный снизу сосуд… Внимательно пронаблюдав все эти явления, вы пускаетесь в плавание. Судно идет с любой скоростью, какая вам будет угодна. До тех пор и поскольку движение судна будет прямолинейным и равномерным без рысканья то в одну, то в другую сторону, вы не обнаружите ни малейших изменений в наблюденных ранее явлениях и не сможете отличить ни по одному из них, движется ли судно или стоит на месте… Капли будут, как и прежде, падать в подставленный снизу сосуд, ничуть не отклоняясь к корме, хотя пока капли находятся в воздухе, судно успевает пройти значительное расстояние. Рыбка в воде будет плавать вперед (по ходу движения судна) так же часто, как и назад, и с одинаковой легкостью подплывать к корму, в каком бы месте у стенок сосуда он бы ни был насыпан. Наконец, мухи и бабочки будут по-прежнему летать по всем направлениям, не отдавая предпочтения ни одному из них, не скапливаясь ближе к корме, как бы от усталости, будучи вынужденными следовать курсу судна, от которого они будут отделены на протяжении продолжительных интервалов времени, в течение которых они находятся в воздухе».

Этот замечательный факт, получивший название принципа относительности Галилея, имеет в действительности решающее значение для наполнения копернианской точки зрения динамическим смыслом. Николай Коперник (1473–1543) и древнегреческий астроном Аристарх (ок. 310–230 гг. до н. э.; не путать с Аристотелем!) за восемнадцать веков до Коперника выдвинули гипотезу о том, что Солнце покоится, а Земля движется, вращаясь вокруг своей собственной оси и обращаясь по орбите вокруг Солнца. Почему мы не ощущаем этого движения, которое происходит со скоростью около нескольких сотен тысяч километров в час? До того, как Галилей выдвинул свою динамическую теорию, этот вопрос действительно представлял настоящую и глубокую загадку для сторонников копернианской картины мироздания. Если бы была верна более ранняя «аристотелевская» версия динамики, согласно которой реальная скорость системы в ее движении сквозь пространство влияла бы на динамическое поведение системы, то движение Земли заведомо было бы чем-то непосредственно очевидным для нас. Относительность Галилея позволяет понять, каким образом Земля может находиться в движении, хотя это движение не будет чем-то воспринимаемым нами непосредственно [107]).

Заметим, что в рамках галилеевой относительности не существует локального физического смысла, который можно было бы придать понятию «в покое». Это приводит к важным следствиям относительно того, как надлежит рассматривать пространство и время. Интуитивная картина пространства и времени состоит в том, что «пространство» представляет собой своего рода арену, на которой происходят физические события. Физический объект может в один момент времени находиться в одной точке пространства, а в более поздний момент времени может оставаться в той же точке или оказаться в другой точке пространства. Представим себе мысленно, что точки пространства каким-то образом могут сохранять свое положение от одного момента времени до следующего момента так, что имеет смысл говорить о том, изменил ли некоторый объект свое положение в пространстве или не изменил. Но галилеева относительность учит нас, что «состояние покоя» не имеет абсолютного характера и поэтому невозможно придать смысл выражению «одна и та же точка пространства в два различных момента времени». Какая точка евклидова трехмерного пространства физической реальности в один момент времени является «той же» точкой евклидова трехмерного пространства в другой момент времени? На этот вопрос невозможно ответить. Создается впечатление, что для каждого момента времени нам необходимо иметь совершенно «новое» евклидово пространство! Этому можно придать смысл, если рассмотреть четырехмерную пространственно-временну́ю картину физической реальности (рис. 5.5).

Новый ум короля: О компьютерах, мышлении и законах физики - i_078.png

Рис. 5.5. Галилеево пространство-время: частицы, движущиеся равномерно и прямолинейно, изображены в виде прямых

Трехмерные евклидовы пространства, соответствующие различным моментам времени, в этой картине действительно рассматриваются отдельно друг от друга, но все эти пространства объединены, образуя совместно полную картину четырехмерного пространства-времени. Истории частиц, движущихся равномерно и прямолинейно, описываются прямыми (называемыми мировыми линиями) в пространстве-времени. В дальнейшем я еще вернусь к проблеме пространства-времени и относительности движения в контексте эйнштейновской специальной теории относительности. Мы увидим, что довод в пользу четырехмерности обретает в этом случае гораздо бо́льшую силу.

Третья из великих догадок Галилея стала ключом к началу понимания закона сохранения энергии. Галилея главным образом интересовало движение объектов под действием силы тяжести. Он заметил, что если тело стартует из состояния покоя, то идет ли речь о свободно падающем теле, или о колеблющемся маятнике произвольной длины, или о теле, соскальзывающем по наклонной плоскости, скорость движения всегда зависит только от расстояния по вертикали, пройденного телом от начального положения. Кроме того, достигнутая скорость всегда в точности достаточна для возвращения тела на ту высоту, с которой оно начало двигаться. Теперь мы должны были бы сказать, что энергия, запасенная телом на исходной высоте над поверхностью земли (гравитационная потенциальная энергия), может превращаться в энергию движения тела (кинетическую энергию, которая зависит от величины скорости тела), а та, в свою очередь, — в потенциальную энергию, причем в целом энергия не утрачивается и не приобретается.