Информатика, кибернетика, интеллект - Пушкин В. Г.. Страница 39

118

дуктивность и организованность. Способность к самоорганизации вычислительного процесса на основе памяти и обучения выражает коренное свойство машинного интеллекта - экстраполяцию выводов с использованием исходной информации.

В литературе по философским вопросам кибернетики возможность создания искусственного интеллекта ставится в зависимость от решения проблемы самоорганизации. При этом обычно отмечается, что самоорганизацией в строгом смысле обладают лишь живые существа. Автоматы современного типа, не отличающиеся подлинной автономностью, то есть допускающие косвенное участие человека, не являются в полном смысле слова самоорганизующимися; они реализуют лишь отдельные стороны самоорганизации. Так, В. С. Тюхтин пишет: "Создание технических систем, являющихся автономными носителями интеллектуальных функций (т. е. систем искусственного интеллекта в строгом смысле слова), возможно лишь на уровне самоорганизующихся систем. А поскольку до сих пор не созданы искусственные самоорганизующиеся системы, обладающие активностью, эквивалентной активно-потребностному началу живых систем, то современные технические системы не могут обладать интеллектуальными, творческими функциями. В строгом смысле слова термин "искусственный интеллект" применим не к машинам как таковым, а к человеко-машинным системам" [80]. Этот автор предлагает вначале создать хоть бы простейшую самоорганизующуюся систему [81], понимая под самоорганизацией самосовершающийся и самопрограммирующийся процесс, автономность которого осуществляется без вмешательства внешних по отношению к данной системе факторов и систем того же типа или выше его.

В этом заключено, однако, некоторое противоречие: 1) требуется создать самоорганизующую систему; 2) самоорганизация происходит без вмешательства внешних по отношению к данной системе факторов. В известном смысле системы искусственного интеллекта должны "сами себя создать", что успешно осуществляется, если тем более рассматривать этот процесс с точки зрения не субъективной, а объективной логики. Однако в самоорганизующихся системах с искусственным интеллектом большое значение имеет диалектика внутреннего и внешнего.

Необходимо также обратить внимание на то, что современные ЭВМ, не достигая еще высших уровней самоорганизации, успешно выполняют функции усилителя человеческого интеллекта. Однако дальнейший прогресс в области искусственного интеллекта, по существу, упирается в проблему самоорганизации. Как замечает В. С. Тюхтин, "проблема самоорганизации есть ключ к моделированию естественного интеллекта и к оптимизации взаимодействий человека и компьютера. Но в настоящее время еще не выявлен полный набор принципов самоорганизации, не созданы приемлемые модели и схемы, выражающие специфику самоорга

119

низации" [82]. Вместе с тем концептуальная модель самоорганизации [83], предложенная на основе системно-кибернетического подхода и конкретизированная применительно к различным классам самоорганизующихся систем, позволяет по-новому взглянуть на проблему искусственного интеллекта. Она раскрывает эвристическое значение для этой области таких принципов, как самоорганизующая активность, внутренняя целенаправленность, оптимальная надежность и стохастическая детерминация.

Таким образом, самоорганизация заключает в себе проблематику, исследование которой позволяет ныне говорить о важных вопросах философии, науки и культуры. Самоорганизация питает стиль мышления, адекватный уровню общенаучных принципов, понятий и идей. Понятия организации и самоорганизации выступают как узловые категории общенаучного уровня знания и подхода к проблеме эволюции материи. Так, использование этих понятий в эволюционном учении способствует исследованию отношений между специфическими законами организации различных уровней эволюции.

Будучи важнейшим атрибутом прогрессивного развития, самоорганизация играет важную роль в "творчестве" эволюции. Идея творческой эволюции получает на основе самоорганизации материалистическую трактовку. Эволюция живого - процесс творческий, в том смысле, что она создает новые формы, не существовавшие в прошлом. Идея творческой эволюции позволяет провести четкое различие между живым и неживым. Самоорганизация, включающая в себя факторы активности, целенаправленности, надежности и стохастичности, и есть то специфически общее, что присуще миру живого в отличие от физического мира. Вместе с тем, насколько нам удалось показать, системно-кибернетический подход дает глубокое понимание неразрывности между живым и неживым миром. Такое понимание служит необходимой предпосылкой рассмотрения проблемы искусственного интеллекта.

ГЛАВА IV

ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

1. Исторический экскурс

В настоящее время развитие науки и техники немыслимо без кибернетики. Являясь важным фактором ускорения научно-технического прогресса, наука об управлении приобретает все возрастающую роль в решении проблем интенсификации производства, в выработке оптимальных стратегий общественного управления. Непосредственно связанная с процессами автоматизации умственного труда, кибернетика поставила на новую теоретическую и техническую основу проблему создания искусственного (машинного) интеллекта. Эта авангардная ныне проблема имеет, однако, длительную историю и предысторию - многовековой путь развития устройств и систем управления в физиологии и технике.

Период с древних времен до XVII в. следует рассматривать как предысторию кибернетических систем. Он характеризуется появлением автоматических устройств, имитирующих внешние свойства животных и людей. Подлинная же история вопроса начинается с XVII в., который ознаменовался появлением устройств, воспроизводящих мыслительные способности человека [1].

Простые механизмы - отдаленные прообразы кибернетических систем создавались уже в древности. Примерами могут служить механический голубь, сконструированный Архитом Тарентским в V в. до н. э., и искусственная ползающая улитка Деметрия из Фалер (IV-III вв. до н. э.). Такие устройства выражали тенденцию к техническому воспроизведению простейших свойств и функций живых организмов. Впоследствии, как известно, этот подход занял важное место в кибернетике (кибернетическое моделирование систем и функций живого). Автоматы древности использовались главным образом жрецами в качестве "чудес". Одним из наиболее известных устройств подобного рода является автомат, приписываемый Герону Александрийскому (I в. до н. э.), служивший для продажи "святой воды".

Для всех автоматов общим было то, что конструирование их осуществлялось с использованием технических средств; имитация относилась к чисто внешним характеристикам; конструирование носило сугубо эмпирический характер и не основывалось на теории построения автоматов [2]. Дальнейший шаг в развитии автоматических устройств был невозможен до изобретения достаточно компактного аккумулятора энергии. Им стала заводная

121

пружина, получившая широкое распространение в часовом производстве, оказавшем большое влияние на развитие автоматов. К. Маркс в письме к Ф. Энгельсу отмечал: "Часы - это первый автомат, употребленный для практических целей. На их основе развилась вся теория производства равномерного движения" [3].

С зарождением классической механики конструирование автоматов поднялось на новую ступень. Началась имитация сложных человеческих функций, таких как письмо и игра на музыкальных инструментах. Однако соответствующие устройства, даже относительно сложные (например, андроиды), представляли собой чисто механические управляющие системы. Все эти автоматы были лишены способности реагировать на изменение внешних условий.

Художники и экспериментаторы XV в., писатели, инженеры и техники XVI в. прокладывали дорогу новой оценке труда, функций технического знания, значения искусственных процессов в изменении и преобразовании природы. Они защищали механические искусства от обвинения в том, что занятия ими якобы унизительны. Подобный подход к знанию и науке, впервые прослеживающийся в трудах техников XVI в., сыграл принципиальную и решающую роль в становлении и развитии научного прогресса.