История античной эстетики (ранняя классика) - Лосев Алексей Федорович. Страница 73
Платоновский термин "anJ logia" Цицерон первый - и очень удачно - перевел как "proportio". Так как платоновская аналогия - это по существу равенство двух отношений, то и мы здесь будем употреблять термин "пропорция". Таково же понимание этого термина и в современной математике. Но, конечно, это понимание слишком отвлеченное. Его надо конкретизировать, и тут могут встретиться разные неожиданности.
2. Платоновские тексты о пропорциях, не имеющие прямого отношения к эстетике
Для общей ориентации укажем сначала тексты Платона, не имеющие прямого отношения к эстетике. В Theaet. 186 с читаем, что все непосредственные телесные впечатления люди и животные получают тотчас же после рождения; "соображения же (analogismata) относительно сущности (oysian) и пользы возникают с трудом и в течение известного времени при помощи многих предметов и воспитания, если только возникают". Здесь "аналогия" есть вообще мышление или мысль, возникающая на основе умственной выучки и воспитания. По-видимому, имеются в виду постоянные акты сравнения одних предметов с другим, необходимые для развития мысли. То же и в Crat. 399 сл.: "Прочие животные ничего не рассматривают, не сравнивают (analogidzetai), но расчленяют из того, что видят; человек же одновременно и видит... и расчленяет и соображает (logidzetai) то, что видит". В R. P. IV 441 С. противопоставляется "разумное соображение (to analogisamenon) о лучшем и худшем" "неразумно аффективному (tAi alogistAs thymoymeni)".
Гораздо ближе к эстетическому значению "аналогии" подходит текст из Politic. 257 сл., где софист, политик и философ "отличаются один от другого больше, чем по пропорции (cata ten analogia) нашей науки", т.е. больше, чем по геометрической пропорции. Сказано это, конечно, в шутливом тоне, так как едва ли тут мыслится настоящая геометрическая пропорция. Но "пропорция" тут уже, несомненно, говорит о каких-то отношениях и о взаимном отношении этих отношений.
Вплотную к учению пропорциональности подходит Epin. 990 e - 991 b - текст, к сожалению, весьма неясный44. Наш перевод этого текста (тоже не абсолютно достоверный) таков: "Но что божественно и удивительно для вдумчивого наблюдателя это то, что всякая [вычисляемая или построяемая] природа [вещь] отпечатлевает свой вид и род [свои видовые и родовые образования] при помощи каждый раз особой пропорциональности в связи с тем, что образующий элемент (dynameos) и ему противоположный [например, основание и высота четырехугольника] всегда находятся между собою в двойном отношении. Именно, первая [природа или пропорция] с двойным отношением есть та, которая, с точки зрения отношения, переходит от числа 1 к числу 2. Двойной является также и та, которая образует тело и осязаемое, поскольку она переходит от 1 к 8. А то, что является двойным [может иметь] середину, которая одинаковым образом больше меньшей и меньше большей части; с другой стороны, она превосходит одну и превосходится другой частью на одну и ту же долю своих крайних членов. Так, посредине между 6 и 12 получается величина полуторная [для второго случая] и величина, равная целому с одной третью [для первого случая]. Та из этих самых, которая находится [строго] посредине того и другого, научила людей согласованному и соразмерному исполнению ради воспитания в ритме и гармонии, даровавши [это] счастливому хороводу Муз".
Если мы правильно понимаем это место, то здесь речь идет об универсальности диадического начала (наравне, конечно, с монадическим, о котором вопроса тут специально не поднимается), которое определяет собою всякое алогическое становление (например, пространство, время, движение и пр.). Это диадическое начало, понимаемое у Платона (и у пифагорейцев) как отношение 1:2, повторяется везде совершенно одинаково. Как от точки мы приходим к прямой, пользуясь этим отношением, так от прямой - к плоскости и от плоскости - к телу. Тут везде будет отношение 1:2. Если 1 считать за точку, а 2 за прямую, что 2?2?4 будет плоскостью, а 4?2?8 будет телом. Таким образом, мы здесь имеем уже не просто отношение, а равенство целого множества отношений, т.е. пропорцию, "аналогию". От обычной пропорции в нашем понимании она отличается только тем, что она обладает зрительным характером, т.е. в данном случае геометрическим, и тем, что она - это еще более конкретно говорит о пространствах разных измерений. Измерения пространства, оказывается, возникают последовательно одно из другого путем некоторой особой операции, связанной - в представлении Платона - с диадическим принципом. Тождество этих операций при переходе от точки к линии, от линии к прямой и от прямой к плоскости и есть платоновская пропорция в данном случае. Она, таким образом, далеко выходит за пределы как числовых, так и геометрических измеримых отношений, поскольку переход от одного пространственного измерения к другим не может совершиться ни от каких бы то ни было арифметических операций, ни от количественных пространственных. Переход от одного измерения пространства к другому есть переход качественный, если не прямо понятийный.
И у Платона, и у пифагорейцев, и у неоплатоников диада (или, как часто у них говорится, "неопределенная диада") есть принцип становления, в отличие от нестановящегося и устойчивого бытия, которое они называют "монадой". Однако становление это не нужно понимать в том отвлеченном смысле, как это понимается в новейшей философии. У греков диада еще слабо отличается от телесного или геометрического перехода от одной точки пространства к его другой точке. Но мало и этого. С понятием диады греки объединяли переход от одного измерения пространства к другому, т.е. от точки к линии, от линии к плоскости, к трехмерному телу. Дальнейшие эти свойства трехмерного тела тоже появлялись в результате применения обычной диады. Поэтому если от трехмерного тела вообще переходили, например, к теплому или холодному трехмерному телу, то получение и этого нового свойства тела тоже мыслилось в результате того становления, которое определялось все тем же принципом диады. Итак, античную диаду надо понимать не отвлеченно, а вполне материально, что тоже глубочайшим образом соответствует стихийному материализму древних.
Следовательно, если в приведенном тексте Платона речь идет о пропорциональности переходов от одного пространственного измерения к другому и если измерения эти надо понимать также и в широко качественном смысле, то эстетический смысл приведенного текста должен свидетельствовать о живой и как бы одушевленной структуре предмета, в котором все определяется не просто количественным способом, а в котором единая пропорциональность царит во всех его проявлениях. Предмет может быть бесконечно разнообразен; но в нем должна быть некая единая структура, пропорционально охватывающая собою все его бесконечно разнообразные проявления. Так следует понимать этот трудный и обычно механически переводимый текст Платона.
Приведенный отрывок содержит, однако, еще одну мысль, содержащую чисто арифметическое понимание пропорции. Оказывается, когда уже дано то или иное пространственное измерение (например, прямая), то мы можем в его пределах находить и более сложную пропорцию. А именно, взявши отрезок прямой, мы можем выбрать между ее концами такие две точки, которые будут делить весь отрезок по-разному, но которые содержат единство своего отношения к его концам. Так, возьмем числа 6, 8, 9, 12. Тут, с одной стороны, в одинаковом отношении к 6 и 12 находится число 8, так как 8 превосходит 6 на ту же долю числа 6, на какую долю числа 12 это 8 превосходится числом 12. С другой стороны, в аналогичном отношении к 6 и 12 находится также и число 9, хотя это отношение и не адекватно первому. А именно, 9 на столько же единиц превосходит 6, на сколько само превосходится числом 12, т.е. находится ровно посредине между ними. Первое отношение 4?3, второе - 3?2.
Итак, здесь ясное учение о пропорциональности как о равенстве отношений.
Аналогичный, но гораздо более прозрачный текст находим мы в Tim. 31с 32а: "Двух тел самих по себе нельзя как следует связать воедино без третьего, потому что для этого в середине между ними обоими непременно должна быть какая-нибудь связь, которая бы их соединила. Из связей же самой лучшей, конечно, могла быть та, которая образовала бы наиболее цельное единство из себя и соединяемых [ею звеньев]. Но лучше всего способна сделать это пропорция (analogia), потому что, когда между тремя какими бы то ни было величинами, между числами ли, массами ли или силами - [существует такое отношение, что] средняя [из них] так относится к последней, как первая относится к ней самой и как последняя относится к средней, так точно середина относится к первой, тогда выходит, что средняя становится и первою и последнею, а первая и последняя обе становятся средними, - словом, что всякая из них необходимо представляет собою то же самое, что и всякая другая, и что они, будучи одним и тем же в отношении друг к другу, все вместе составляют собою единое целое".