История античной эстетики (ранняя классика) - Лосев Алексей Федорович. Страница 78
Во-первых, отношения, входящие в пропорцию, Платон (как и вся античность) понимает в самом широком смысле слова. Поэтому земля, вода, воздух и огонь вместе с соответствующими многогранниками могут браться у него в самой разнообразной комбинации, как по числу членов отношения, так и по их взаимному расположению. Поэтому, если в космическом плане Платон от земли переходил к воде и дальше - к воздуху и огню, то ничего не стоило ему, в целях установления тех или иных пропорций, переходить также и от земли прямо к воздуху, а уже потом к воде и огню. Каждая такая комбинация, как это вполне естественно, имела свою собственную структуру и свое собственное взаимоотношение элементов.
Во-вторых, отношение здесь понимается настолько в общем виде, что совершенно безразлично, переходить ли от 1 к 2 или от 2 к 1, переходить ли от 3 к 4 или от 4 к 3 и переходить ли от 3 к 2 или от 2 к 3. Это не наша абстрактная арифметика, в которой числитель и знаменатель дроби не могут меняться между собой местами. В античном учении о пропорциях такая перемена всегда возможна, потому что важно самое отношение, а вовсе не абсолютные величины относящихся между собой элементов. Поэтому, если мы берем отношение огонь, вода, воздух и земля, то, переставив крайние члены, мы с таким же успехом можем взять и отношения - земля, вода, воздух, огонь.
В-третьих, желая осмыслить эстетику многогранников и связать ее с эстетикой акустической, древние исходили, по-видимому, из количества вершин многогранников и получали ряд - 4, 6, 12, 8, так как эти числа как раз и соответствовали количеству вершин пирамиды, октаэдра, икосаэдра и куба (додекаэдр, как наиболее близкий к шару, и сам шар они сохраняли для очертания всего космоса в целом), или, что то же, 1, , 3, 2. При этом акустика требовала, чтобы отношение октавы было 1:2, т.е. огненная пирамида и земляной куб трактовались как отстоящие друг от друга на октаву. Но если октава есть отношение 1:2, то число 3, очевидно, уже выходило за октаву, и поэтому его нужно было трактовать так, чтобы оно оставалось все же в пределах октавы. По-видимому, здесь рассуждали так, что под числом 3 понимали просто 3 тона, т.е. кварту, и поэтому вышеприведенный ряд акустически понимался как основной тон, квинта, кварта и октава. А так как существовала живейшая потребность отразить космическое соотношение элементов (внизу - тяжелый куб земли, выше более легкая и текучая вода - икосаэдр, еще легче и быстрее воздух - октаэдр и выше всего легчайший огонь - пирамида), то вышеприведенный ряд после соответствующей перестановки членов получал следующий вид: 1, , , 2. Другими словами, земля и вода составляли кварту, земля и воздух - квинту, а вода и воздух (:) - один тон ().
И, наконец, в-четвертых, соответственно нетрудно понять, что пропорция 1::2 есть гармоническая, пропорция 1::2 есть арифметическая и пропорция 1:=:2 - геометрическая (причем здесь возможны разнообразные перестановки этих элементов, как это мы знаем из современной нам арифметики).
Таким образом, и физически, и геометрически, и акустически, и арифметически (в смысле трех основных пропорций) во всех этих рассуждениях было свое непререкаемое рациональное зерно. И если в чем можно обвинять античную эстетику, так это только в том, что вполне непререкаемые, вполне понятные и вполне здравые рациональные построения из разных областей чувственного восприятия она обязательно хотела объединить в нечто единое и целое тоже чувственным способом, в то время как чувственность вовсе не является единственным критерием познания, а требуются еще и рассудочные, абстрактные и разумные критерии. Как мы теперь знаем, солнце вовсе не заходит и не всходит. Но если исходить из чувственных данных, то солнце именно и всходит и заходит. И с точки зрения голой чувственности возразить тут нечего. Поэтому, имея космически-геометрическую последовательность - земляной куб, водяной икосаэдр, воздушный октаэдр и огненную пирамиду, а с другой стороны, акустическую последовательность - 1, , 2 (т.е. исходный тон, кварту, квинту и октаву), древние, желая во что бы то ни стало объединить обе последовательности, делали соответственную перестановку в первой последовательности и считали земляной куб за 1, а огненную пирамиду за 2 (так как 1:2 и 2:1, как указано выше, трактовались как нечто тождественное). Широкое понимание отношений давало им для этого полную свободу. Такова была непреодолимая потребность толковать единство всех пропорций, геометрических, стихийных, акустических и арифметических, как единство обязательно чувственное.
6. Гносеологическая пропорция
Наконец, мы имеем еще одну область, где Платон мыслит пропорциональное отношение, это - область знания. Не только чувственное восприятие, но и знание также должно быть рассматриваемо с точки зрения пропорции. "...Нам нравится... чтобы первую часть [познавательных способностей] мы называли знанием (epistCmCn), вторую - рассудком (dianoian), третью верой (pistin) и четвертую - уподоблением (eicasian), причем две последние [способности] вместе - мнением (doxan)..., а первые две - мышлением (noCsin). А именно, мнение относится к становлению, мышление же - к сущности. И как сущность относится к становлению, так мышление - к мнению, и как мышление - к мнению, так знание - к вере и рассудок - к уподоблению" (R. P. VII 533e - 534a). Дальше здесь говорится о том, что для ясности рассуждения надо пока отказаться от пропорции самих предметов, к которым эти пропорциональные способности относятся, и сосредоточиться только на самих способностях.
Пропорция эта, как видим, сформулирована яснейшим образом. Разумеется, у нас нет возможности входить в анализ всех этих трудных платоновских терминов. Но необходимо отметить два простых обстоятельства.
Во-первых, тут говорится о разделении на "сущность" и "становление". С этим мы уже встречались у Платона, и это трудности для нас не составляет. Тут всемирно-историческое разделение на идеальное и реальное, бытие и небытие, смысл и факт, идею и материю и т.д. Во-вторых, каждая из этих областей, в свою очередь, делится здесь на две области - по тому принципу, который мы, не входя в текстовой анализ, прямо назовем здесь интуитивным. Иными словами, возможно чистое поэтическое знание - интуитивное, т.е. дающее свой предмет в его непосредственном существовании (эпистема), и дискурсивное, т.е. дающее свой предмет только в результате ряда логических (рассудочных) переходов, т.е. умозаключений и доказательств (дианоя). Возможно чувственное доксическое знание - интуитивное, когда чувственный предмет дается в своем непосредственном явлении и факте (пистис), и дискурсивное, когда в сознании в результате ряда отображений чувственных предметов возникает ряд "умоуподоблений" сознания этим чувственным предметам. При этом налицо соответствующие обобщающие выводы (эйкасия).
При таком подходе к четырем познавательным способностям с полной ясностью устанавливается пропорциональное отношение между ними: чтобы от знания перейти к рассудку, надо исключить интуитивность, и чтобы перейти от веры к уподоблению, надо тоже исключить интуитивность. Это отношение между членами первой пары тождественно с отношением между членами второй пары. А тождество двух отношений есть пропорция.
Чтобы покончить с пифагорейско-платоновским учением о пропорциях, обратим внимание еще на одно интересное обстоятельство, которое в науке не раз переоценивалось. Дело в том, что частным видом геометрической пропорции является так называемое золотое деление, начало учения о котором часто приписывали "пифагорейцам" и развернутую теорию которого находили у Платона. В эпоху Возрождения эта "божественная пропорция" фигурировала именно в пифагорейско-платоническом обличии. Если обратиться к первоисточникам, то отчетливых материалов о сознательно проводимой теории золотого деления у Платона мы не найдем. Золотое деление получается из обычной геометрической пропорции путем внесения в нее идеи последовательного убывания чисел. Получается, что целое так относится к своей бoльшей части, как бoльшая к меньшей. Золотое деление, следовательно, есть равновесие между целым и частью, наблюдаемое при последовательном исчерпывании целого. Что мы имеем на эту тему у Платона?