Физика времени - Чернин Артур Давидович. Страница 19
И здесь имеется, конечно, полная взаимность. Ведь другим, когда они наблюдают за нами, все, что с нами происходит, представляется замедленным. По их часам мы тратим больше, чем они, времени на те же действия. Они считают, что леденец у нас во рту тает медленнее, чем у них. Их собственный леденец уже растаял, а нас они видят еще с леденцом. Нам же, разумеется, медлительными кажутся «они» — те, кто проносится мимо нас в воображаемом поезде Эйнштейна или на ракете. И их леденец, как мы считаем, тает дольше.
Быстрые пионы
К счастью, относительность времени незаметна в повседневной жизни, так как скорости всех относительных движений очень малы по сравнению со скоростью света. А иначе «весьма бы усложнился трезвый быт».
Относительность времени и все связанные с нею эффекты, бесспорно, существуют всегда, но при малых скоростях движений они совершенно неуловимы, ускользают от наших ощущений и даже от самых чувствительных приборов.
Другое дело — явления при больших скоростях, приближающихся к скорости света. Такие явления постоянно встречаются в физике элементарных частиц. Электроны, протоны, мюоны, пионы и другие частицы нередко рождаются очень быстрыми в тех или иных процессах в микромире. Их также специально ускоряют на установках, которые так и называются ускорителями. На самых больших ускорителях частицы разгоняются до больших скоростей, действительно приближающихся к скорости света. Тогда-то относительность времени оказывается не то что уловимой, а просто очень сильной.
Расскажем об одном из реальных экспериментов. Пионы (или, иначе, пи-мезоны), упомянутые выше среди других частиц бывают трех видов — положительные, отрицательные и нейтральные в соответствии с имеющимся у них электрическим зарядом. Все они неустойчивы, самопроизвольно распадаются и живут очень недолго. Среднее время жизни положительного пиона составляет 25 миллиардных долей секунды.
Мы назвали время — так скажем же, в какой системе отсчета. Это среднее время жизни в системе, в которой пионы покоятся, то есть в их собственной системе отсчета.
Иногда вместо среднего времени жизни частиц говорят о времени полураспада; это время, за которое число распадающихся частиц уменьшается вдвое. Оно составляет приблизительно 69 % среднего времени жизни (0,69 — натуральный логарифм числа 2, взятый с точностью до первых двух цифр после запятой), для пионов это — 17 миллиардных долей секунды.
Большой коллектив распадающихся частиц представляет собой удобные часы: по числу частиц, распавшихся или выживших к данному моменту, можно измерять промежутки времени. Эти часы указывают время в собственной системе отсчета частиц. Если число положительных пионов уменьшилось вдвое, значит, по их собственным часам прошло 17 миллиардных долей секунды. Если частиц стало вчетверо меньше, значит, прошло 34 миллиардных секунды и так далее.
В реальном эксперименте пионы удается разогнать до скорости, составляющей 90% скорости света. И вот оказалось, что быстро движущиеся пионы живут дольше, чем неподвижные. По лабораторным часам, мимо которых проносились пионы, их среднее время жизни составило миллиардных секунды. Это в два с лишним раза больше времени жизни покоящихся частиц. Соответственно измеренное по лабораторным часам время полураспада летящих пионов составило 39 миллиардных секунды.
Результат эксперимента со всей определенностью демонстрирует относительность времени, о которой говорит теория. С нашей точки зрения, то есть по часам нашей лаборатории, быстро летящие пионы распадаются, «тают» медленнее, чем такие же частицы, покоящиеся в нашей лаборатории. Когда число летящих пионов стало вдвое меньше исходного, от покоящихся пионов осталось менее четверги их исходного числа.
Можно сказать, что с нашей точки зрения, по часам нашей лаборатории, все события здесь у нас происходят вдвое быстрее, чем там у них — у летящих пионов.
Чем больше скорость, с которой проносятся мимо нас частицы, тем медленнее они распадаются, тем дольше — для нас — живут. Если бы пионы удалось разогнать еще сильнее, скажем, до скорости, составляющей 99,9999% скорости света, время жизни этих частиц, измеренное по лабораторным часам, возросло бы в сотни раз. Чтобы довести время их жизни до нескольких секунд, надо сообщить частицам скорость, которая отличалась бы от скорости света на 10-14 процента. А чтобы жить — для нас — вечно, их скорость относительно нас должна совпасть со скоростью света. Но последнее невозможно: со скоростью света не могут двигаться никакие частицы, масса которых отлична от нуля *).
*) Напомним, что частиц с нулевой массой известно не так уж много. Это, собственно, только фотон – квант света. Нулевую массу должен также иметь, согласно теории, гравитон - гипотетическая частица, квант тяготения, предсказываемый обшей теорией относительности (см. главу 13): возможно, нулевую массу имеют нейтрино: сами эти частицы надежно регистрируются, но точно измерить их массу пока не удается.
Красное, зеленое, голубое
Возможно, многие слышали шутку про находчивого водителя, который проскочил перекресток на красный свет светофора, а когда его остановили, стал оправдываться тем, что красный свет показался ему зеленым — физика это допускает, если вы движетесь навстречу источнику света.
— Но при какой скорости? — спросили его.
— Легко прикинуть — что-то около 75 % скорости света.
— В таком случае вы будете оштрафованы за превышение скорости.
Красный свет действительно покажется зеленым или даже голубым, если мчаться навстречу источнику света с достаточно большой скоростью или если сам источник света очень быстро движется к нам навстречу. Более полувека назад астроном из Пулковской обсерватории А. А. Белопольский воспользовался этим физическим эффектом, чтобы измерять скорости звезд . Если звезда летит на нас, ее свет кажется нам более голубым, если от нас — более красным.
Физики знали об этом эффекте изменения цвета при движении источника еще раньше, с середины прошлого века. Цвет света зависит от длины волны электромагнитных колебаний. Чем больше длина волны видимого света, тем ближе цвет к красному краю спектра; чем меньше она, тем цвет ближе к голубому краю спектра. Длина волны в испускаемом источником свете не совпадает с длиной волны в принимаемом свете, если имеется относительное движение источника и приемника: когда источник и приемник сближаются, длина волны в принимаемом свете оказывается короче, чем в испущенном; если же они удаляются друг от друга, длина волны, наоборот, возрастает.
Наглядно это можно представить так: когда источник и приемник сближаются, волна как бы сжимается, а когда они удаляются друг от друга, волна растягивается.
Такая зависимость цвета и длины волны от движения источника света называется эффектом Доплера, по имени открывшею его австрийского физика.
Эффект Доплера распространяется на любые волновые, периодические процессы. Он влияет и на звук — на высоту тона, которая зависит от длины волны звуковых колебаний. Каждый мог заметить это по гудку поезда — его тон кажется более вы– высоким, когда поезд приближается к нам, и более низким, когда он удаляется. Высокому тону соответствуют более короткие длины волн звуковых колебаний, а низкому, наоборот, более длинные *).
*) Нужно заметить, что, в отличие от света, звук может распространяться только в какой-либо среде, но не в пустоте. Среда служит и системой отсчета: если относительно нее движется источник звука, а приемник покоится, то изменяется частота принимаемого звука. Если же источник покоится, а приемник движется относительно среды, то изменяется скорость распространения звука. Для света существенно лишь относительное движение источника и приемника.
Говоря об эффекте Доплера, можно пользоваться вместо длины волны света (или звука) ее периодом. Период — это длина волны, деленная на скорость света (или звука), то есть время, за которое свет (звук) пробегает расстояние, равное длине волны. Тогда эффект Доплера означает возрастание периода волны при удалении источника от приемника и уменьшение его в противоположном случае.