Учение логики о доказательстве и опровержении - Асмус Валентин Фердинандович. Страница 9
Напротив, в числе начальных оснований науки находится не часть аксиом, а все аксиомы данной науки, не часть определений, а все её определения.
Чем дальше отстоит доказываемое положение от начальных оснований данной науки, тем большим становится число предшествующих оснований доказательства. И действительно: каждое доказанное ранее положение, на которое в данном доказательстве наука ссылается, как на одно из непосредственных оснований доказываемого тезиса, обусловлено, в свою очередь, длинным рядом предшествующих ему положений. Ни на одно из них в пределах данного доказательства не ссылаются — иначе доказательство каждой теоремы было бы повторением всего предшествующего этой теореме содержания науки со всеми её доказательствами. В то же время все они могут быть найдены в соответствующем месте системы науки, где они полностью излагаются, иначе основание, на которое опирается доказываемое положение, само было бы -недоказанным.
Наличие в далеко продвинувшейся науке длинной цепи не непосредственных оснований, предполагаемых каждым непосредственным основанием любого доказательства, делает особенно важным условием состоятельности доказательства истинность всех оснований доказываемого тезиса.
В самом деле, непосредственное для данного доказательства основание есть только звено предшествующей ему цепи обусловливающих его оснований. Если эта цепь длинна и если какое-нибудь из её звеньев окажется ложным, то и заключительное звено — данное непосредственное основание доказательства — тоже может оказаться ложным. А в таком случае и доказываемый тезис, как опирающийся на ложное основание, может оказаться ложным.
Поэтому в качестве оснований доказательства должны быть принимаемы только истинные, строго доказанные, проверенные и удостоверенные в своей истинности положения. Любой вид оснований, вообще говоря, сказывается на истинности результата. Поэтому ни входящие в число оснований доказательства положения об удостоверенных фактах, ни определения основных понятий науки, ни аксиомы, ни уже ранее доказанные положения науки не должны быть ложными. Основания доказательства не должны быть даже сомнительными. Сомнительность основания есть по крайней мере возможность его ложности, а возможность ложности в основаниях доказательства делает возможным ложность самого доказываемого тезиса. Поэтому доказательство, опирающееся на сомнительные основания, не есть, строго говоря, подлинное доказательство. Только вполне удостоверенная истинность всех оснований, на которые опирается доказательство, делает доказательство (при соблюдении всех прочих условий и правил, о которых речь впереди) путём и средством к отысканию новой истины.
3. Способ доказательства (демонстрация)
Мы рассмотрели две составные части доказательства: доказываемый тезис и основания доказательства. Мы видели, что главная задача доказательства — сделать непреложной либо истинность доказываемого, либо ложность опровергаемого. Мы видели также, что истинность доказываемого или ложность опровергаемого тезиса не могут быть обнаружены непосредственно. Чтобы убедиться в истинности доказываемого тезиса, следует указать истинное основание, признав которое истинным, мы с необходимостью должны признать истинным также и доказываемый тезис.
Однако, хотя указание истинных оснований для выяснения истинности доказываемого тезиса необходимо, но одним лишь этим мы ещё не достигаем цели доказательства. Только в немногих случаях указание истинных оснований даёт истинность доказываемого тезиса сразу, в виде непосредственного вывода. Так, если требуется доказать, что некоторые из равных между собой углов — прямые углы, то для доказательства истинности этого утверждения достаточно сослаться, как на основание, на истину о том, что все прямые углы равны между собою. Из этого основания сразу, непосредственно, по законам одной лишь логики (а именно — согласно правилам обращения) получается истинный вывод, что некоторые из равных между собой углов — прямые.
Но в огромном большинстве случаев знания истинных оснований, ведущих к признанию истинности тезиса, недостаточно. Необходимо кроме того показать, какова связь, необходимо ведущая от истинности данных оснований к истинности обусловленного ими тезиса. Связь эта во многих случаях непосредственно не видна и требует выяснения. Так, если ученик знает все определения, все аксиомы и все теоремы, из истинности которых, как из оснований, выводится истинность теоремы Пифагора, это ещё не значит, что ученик знает доказательство теоремы Пифагора. Для знания доказательства требуется, чтобы ученик знал, какова связь между всеми известными ему порознь основаниями теоремы Пифагора,— другими словами, какова последовательность оснований и выводов из оснований, необходимо ведущая к признанию истинности доказываемого в этой теореме положения.
Последовательность, или связь оснований и выводов из оснований, имеющая результатом необходимое признание истинности доказываемого тезиса, называется способом доказательства у или демонстрацией. Демонстрация есть не составная часть доказательства, но третья, наряду с доказываемым тезисом и основаниями, логическая характеристика доказательства.
Из этого определения демонстрации видно её отличие от составных частей доказательства— тезиса и основания. И тезис и каждое из оснований — положение об удостоверенном факте, определение, аксиома, ранее доказанное положение науки — представляют собой отдельное суждение. Напротив, демонстрация никогда не есть ни отдельное суждение, ни простая сумма отдельных суждений. Демонстрация всегда есть логическая связь суждений, приводящая к определённому логическому результату. Демонстрация это более или менее длинная цепь умозаключений у посылками которых являются основания данного доказательства, а последним заключением — доказываемый тезис у который, таким образом, удостоверяется в качестве истинного.
Так, при доказательстве теоремы евклидовой геометрии о сумме внутренних углов треугольника (см. рис. 2) мы сначала продолжаем сторону треугольника АВС, например сторону АС до точки Е. Затем проводим из точки С прямую CD, параллельную АВ и по одну с ней сторону от прямой АС. Затем мы рассуждаем следующим образом. Прямая ВС пересекает параллельные (по построению) прямые АВ и CD. Следовательно, углы АВС и BCD будут равны как внутренние накрест лежащие. Прямая АС пересекает те же—параллельные по построению — прямые АВ и CD. Следовательно, углы ВАС и DCE равны как соответственные. Угол ВСЕ, представляющий сумму углов BCD и DCE, равен сумме двух внутренних углов треугольника (АВС и ВАС), так как угол BCD равен углу АВС, а угол DCE равен углу ВАС. Прибавим к углу ВСЕ угол ВСА — третий внутренний угол треугольника АВС. Тогда сумма углов DCE, BCD и ВСА будет равна сумме внутренних углов данного треугольника: углов ВАС, АВС и ВСА. Но так как сумма углов ВСЕ (равного сумме углов ВАС и АВС) и ВСА равна сумме двух смежных углов, а эта сумма равна двум прямым углам, то сумма внутренних углов ВАС, АВС и ВСА в треугольнике АВС также равна двум прямым.
Всё в целом это рассуждение — демонстрация. Основания доказательства не выделяются в группу положений, отдельных от демонстрации, но появляются каждое на том месте, какое определяется для него логической связью всех звеньев демонстрации.
Так как демонстрация — порядок связи между основаниями и тезисом— порядок, непросто усматриваемый из оснований, но такой, который ещё должен быть найден, то доказательство одного и того же положения науки может быть более или менее сложным или простым, громоздким или кратким и т. д. Самый порядок, план доказательства может варьироваться.
Связь оснований, ведущая к усмотрению истинности доказываемого тезиса,— не единственная. А так как связь эта не дана вместе с самими основаниями, но ещё должна быть открыта, выяснена, найдена, то доказательство есть творческая задача науки, которая творческими же средствами и решается.