Другое начало - Бибихин Владимир Вениаминович. Страница 92

Наше современное размазанное знание бесконечности, в основном проецируемой на концы вселенной и времени, — размазанное потому, что-то    ли нет конца вселенной, то ли она искривлена и загнута и имеет край, мы в конечном счете не знаем, — могло бы быть отрезвлено, исправлено опытом бесконечности с убедительностью, о которой я сказал. Ничего подобного однако не происходит, потому что парадоксальным образом для новоевропейского ума на месте неприступной бесконечности встало понятие предела, сделавшее в 19 веке возможным «исчисление» бесконечно малых. Операции с бесконечностью для античности были очевидной невозможностью. Сейчас господствует в целом неопределенное расхожее представление, что с бесконечностью что-то    решено, как-то    справились. Надо читать специальные книги, чтобы узнать, что парадоксы Зенона остались проблемой. Опыта бесконечности, встречи с настоящей бесконечностью, как для Ксенофана например осязаемо земля подступала к нему как бесконечная масса, мы, современные люди, лишены. Для античной мысли достаточно убедительной была встреча с несоизмеримостью в математике. За асимметрией вставала бесконечность, за ней иррациональность, запрещая мечтать о том, что подступы к софии мира не загорожены неприступной стеной.

3. От темы бесконечности есть прямой переход к теме точки. Если кто-то    думает иначе, весело будет без труда пройти там, где на первый взгляд нет связи. Можно начать с примера редукции тела в законах классической физики к точечной массе. Самое важное здесь то, что точка, к которой сведена масса физического тела, оказывается для классической механики беспроблемно определимой в координатах пространства.

Умственную операцию сведения тела к точке умели проводить и древние. Но они сразу попадали в апорию, непроходимый тупик. В парадоксе Парменида-Зенона об Ахиллесе и черепахе оба эти существа сведены к точечным массам. Ахиллес не догонит черепаху вовсе не потому, что каждый раз, дойдя до черепахи, он увидит, что она снова от него чуть отдалилась, а потому что при любом приближении Ахиллеса к черепахе между ними разместится снова бесконечность точек, поскольку любое самое малое отстояние из-за безразмерности точки все равно вместит в себя бесконечность точек, хотя и в другом масштабе. Среди них затеряется точка черепахи. Задача Ахиллеса, состоящая в том, чтобы из бесконечности выбрасываемых любым отстоянием от черепахи точек выбрать именно точку черепахи, никогда не упростится. Она в принципе нерешаема. Невозможно уловить точку в ситуации, когда движение к ней создает новые бесконечности точек, из которых надо выбирать. Поскольку нет понятия предела, ни на какой ступени задача Ахиллеса не облегчится и не упростится, а значит никогда и не будет выполнена. Ахиллес, превратившись в точку, навсегда потерял тем самым другую точку, черепаху. Для античной математической строгости превратить тело в точечную массу и не потерять его невозможно. Новоевропейская механика, которая на свое счастье или на свою беду переступила черту, для античной мысли запретную, показалась бы древним магией, если не чем-то    более темным.

Из-за неуловимости точки нельзя было сосчитывать точки. Поэтому нельзя было, строго рассуждая, сказать, что точек больше чем одна — еще один парадокс. Он, кстати, и был решением проблемы Ахиллеса и черепахи: как только они оба превратились в точечные массы, стало невозможно говорить что они разные, что они не одна и та же точка. Вспомним старое и в сущности не так уж давно забытое. Для кардинала Николая Кузанского равенство всех точек мира одной единственной не гипотеза, а несомненность, хотя и неочевидная, подлежащая математическому доказательству. Трактат «Простец об уме» заглавием гл. 9 имеет: «Существует одна-единственная точка». §    118:

Линия имеет только одну точку, которая, будучи продолженной, и оказывается линией.

О линии как продолжении точки придется еще говорить подробнее.

Во всех атомах — одна и та же точка, как во всех белых вещах — одна и та же белизна.

Точка «неразмножима» (Игра шара I 10; II 84; Наука незнания II 3, 105).

Альберт. Я не очень хорошо это понимаю. Объясни, пожалуйста, почему точка не размноживается и не получается много точек, хотя повсюду в количественном мы видим [массы точек]?

Кардинал. Во всем белом ум видит белизну, но белизна, разумеется, все равно остается единственной. Так во всех атомах он видит точку, но из-за этого точек не становится много.

Единственность точки демонстрируется в мысленном эксперименте с Ахиллесом и черепахой от противного через невозможность наведения, нацеливания и попадания одной точкой в другую. Выбрать точку из бесконечности смогли только лимитировав бесконечность внесением в нее системы координат и постулировав фиксацию точки в ней. Ахиллес и черепаха — отрезвляющий эксперимент, показывающий между прочим невозможность проведения линии между, приходится брать в кавычки, «двумя точками».

Только кажется, что эксперимент абстрагируется от, так сказать, геометрической возможности догнать черепаху. Кто-нибудь подумает: пусть Ахиллес не в состоянии из выплескивающихся перед ним бесконечностей точек выбрать и уловить одну нужную, но не может ли он, так сказать, с закрытыми глазами скользить по прямой, проведенной от его точки к точке черепахи. Рано или поздно он невольно столкнется с уловляемой точкой, даже если сам не сумеет отчетливо фиксировать момент. Столкновение кажется очевидным. Хорошо, если читателю придет в голову это возражение. Оно необходимо для понимания еще одного парадокса точки. Он в следующем.

4. У Евклида возможность провести от любой точки до любой точки прямую линию — это постулат, т.е. требование-допущение. Евклид требует, чтобы такое проведение точки было возможно, так ему нужно для его геометрии; его слушатель со своей стороны допускает, дает разрешение в ответ на такое требование. Я читаю в довольно простой книге по истории математики напоминание о том, что между аксиомами и постулатами следует различать. Различение действительно нужное, хотя даже в справочниках часто смешивают аксиомы и постулаты. Евклид просит принять, что прямую между двумя точками провести можно. Всего у него пять постулатов, αἰτήματα, начинающихся словом ᾐτήσθω, пусть будет попрошенопусть мы попросим.

Постулат — это лишь принцип, который геометр предлагает своему собеседнику принять, но который не является ни ‘очевидным’, ни ‘аксиоматическим’ и который можно отвергнуть, не приходя к противоречию. По-видимому, Евклид придерживался аристотелевской позиции, согласно которой постулаты интерпретировались как простые ‘гипотезы’; они будут подтверждены, если выведенные из них следствия будут соответствовать действительности […] Позиция последователей Евклида была более примитивной: вплоть до XIX века геометры видели в постулатах евклидовой геометрии неопровержимые истины, применяемые для описания чувственного мира [235].

Чтобы провести прямую от точки к точке, надо ту точку уже из бесконечности точек выделить, т.е. сначала решить парадокс Ахиллеса и черепахи. Только тогда можно будет считать первый постулат Евклида аксиомой; наоборот поступать нельзя. Перед  Ахиллесом, не знающим Евклида, пока еще не пролегает прямая, по которой он как по рельсам докатится до точки черепахи. Или можно сказать — уже не пролегает, потому что парменидовский или зеноновский Ахиллес успел опередить Евклида и располагается в геометрии Лобачевского.

Когда думают, что Лобачевский сначала имел в воображении (есть почти технический термин, воображаемая геометрия Лобачевского) другое, искривленное пространство по типу, скажем, гиперболы, а потом на нем построил геометрию, в которой параллельные пересекаются, то опять перевертывают наоборот. Воображаемым — условным, предполагающим снятие парадокса точки — было Евклидово пространство, а в чистом, допостулатном (до Евклидовых прошений и наших мало продуманных разрешений) пространстве Парменида-Зенона проблемы проведения через точку больше чем одной параллельной прямой не существует. Эта проблема вполне отменяется другой, остановившей ум гораздо раньше, проблемой с проведением прямой через точку, и еще раньше — проблемой с фиксацией точки: точка только одна, она не прибавляется к другой точке и не сопоставляется с ней, она неуловимо ускользает. «Точки», которые соединены «прямой», — уже следствие позднего условия и договора; непересечение параллельных — лишь следствие из этой условности. Лобачевский вышел из условного воображаемого пространства, не согласившись принять постулат за аксиому.