Паутина жизни. Новое научное понимание живых систем - Капра Фритьоф. Страница 33

Если мы продолжим наблюдения и отметим точки, соответствующие состояниям движения между крайними положениями, то обнаружим, что они лежат на замкнутой петле. Можно превратить петлю в окружность, должным образом выбрав единицы измерения, но, в общем случае, это будет нечто вроде эллипса (рис. 6-8).

Рис. 6-8. Траектория маятника в фазовом пространстве

Эта кривая называется траекторией маятника в фазовом пространстве и полностью описывает движение системы. Все переменные системы (в нашем простом случае — две) представлены единственной точкой, всегда расположенной где-то на этой кривой. С каждым полным циклом качания маятника точка в фазовом пространстве будет описывать петлю.

В любой момент мы можем измерить две координаты точки в фазовом пространстве и таким образом узнать точное состояние системы (угол и скорость). Заметим, что эта кривая никоим образом не является траекторией самого маятника. Это кривая, образованная двумя переменными системы в абстрактном математическом пространстве.

В этом и заключается методика фазового пространства. Переменные данной системы изображаются в абстрактном пространстве, причем одна точка описывает всю систему. По мере того как система изменяет свое состояние, точка вычерчивает в фазовом пространстве траекторию — в нашем случае замкнутую кривую. Когда система является не простым маятником, а гораздо более сложной структурой, у нее, соответственно, больше переменных, но метод остается прежним. Каждая переменная представлена координатой в отдельном измерении фазового пространства. Если в системе 16 переменных, мы получим 16-мерное пространство. Одна точка в этом пространстве будет полностью описывать состояние всей системы, поскольку эта точка имеет 16 координат, каждая из которых соответствует одной из 16 переменных системы.

Скорость
Паутина жизни. Новое научное понимание живых систем - doc2fb_image_0200000F.jpg

Рис. 6-9. Траектория маятника с трением в фазовом пространстве

Безусловно, мы не можем визуально воспринять фазовое пространство с 16 измерениями; потому его и называют абстрактным математическим пространством. Математики не испытывают никаких проблем с такими абстракциями. Они вполне комфортно чувствуют себя в пространствах, которые нельзя визуализировать. В любом случае, по мере изменения системы точка, определяющая ее состояние в фазовом пространстве, будет двигаться по этому пространству, вычерчивая некую траекторию. Различные начальные состояния системы соответствуют различным начальным точкам в фазовом пространстве, что, в общем случае, обусловливает различные траектории.

Странные аттракторы

Теперь вернемся к нашему маятнику и отметим, что это был идеализированный маятник без трения, раскачивающийся вправо-влево в бесконечном движении. Это типичный пример классической физики, где трением, как правило, пренебрегают. Реальный маятник всегда подвержен некоторому трению, замедляющему его ход, поэтому рано или поздно он остановится. В двухмерном фазовом пространстве это движение отображено кривой, закручивающейся к центру, как показано на рис. 6-9. Эта траектория называется аттрактором, поскольку математики говорят, что, в метафорическом смысле, фиксированная точка в центре системы координат притягивает (англ. «attract») эту траекторию. Метафору распространили и на замкнутые петли, подобные той, что представляет маятник без трения. Траектория в виде замкнутой петли получила название периодического аттрактора, в то время как траектория, закручивающаяся к центру, называется точечным аттрактором.

В течение последующих двадцати лет метод фазового пространства использовался для исследования множества сложных систем. Каждый раз ученые и математики составляют нелинейные уравнения, решают их численными методами, а компьютеры вычерчивают решения в виде траекторий в фазовом пространстве. К своему великому удивлению, исследователи обнаружили, что число различных аттракторов весьма ограничено. Их формы можно классифицировать топологически, а общие динамические свойства системы — вывести из формы ее аттрактора.

Существует три основных типа аттракторов: точечные, соответствующие системам, которые достигают устойчивого равновесия; периодические, соответствующие периодическим колебаниям; и так называемые странные аттракторы, соответствующие хаотическим системам. Типичный пример системы со странным аттрактором представляет собой «хаотический маятник», впервые исследованный японским математиком Йошисуке Уэда в конце 1970-х годов. Это нелинейная электронная схема с внешним питанием, относительно простая, но с исключительно сложным поведением16. Каждое колебание этого хаотического генератора колебаний уникально. Система никогда не повторяет себя, и каждый цикл открывает новую область фазового пространства. Тем не менее, несмотря на кажущуюся неустойчивость движения, точки в фазовом пространстве расположены отнюдь не беспорядочно. Вместе они формируют сложный высокоорганизованный паттерн — странный аттрактор, который теперь носит имя Уэда.

Паутина жизни. Новое научное понимание живых систем - doc2fb_image_02000010.jpg
Рис. 6-10. Аттрактор Уэда. Из Ueda et al. (1993)

Аттрактор Уэда — это траектория в двухмерном фазовом пространстве, которая образует почти повторяющие друг друга паттерны. Это типичная особенность хаотических систем. Изображение на рис. 6-10 содержит более 1 000 000 точек. Ее можно представить в виде среза куска теста, который многократно растягивали и сворачивали. Это означает, что в основе аттрактора Уэда лежит математика преобразования пекаря.

Одно удивительное свойство странных аттракторов заключается в том, что они, как правило, ограничены малым числом измерений — даже в многомерном фазовом пространстве. Например, система может содержать 50 переменных, но ее движение при этом описывается трехмерным странным аттрактором — свернутой поверхностью в 50-мерном пространстве. Это, естественно, характеризует высокую степень порядка.

Таким образом, хаотичное поведение — в современном научном понимании этого термина — разительно отличается от беспорядочного, неустойчивого движения. С помощью странных аттракторов можно определить различие между обычной беспорядочностью, или шумом, и хаосом. Хаотичное поведение детерминировано и образует паттерны, а странные аттракторы позволяют преобразовывать на первый взгляд случайные данные в отчетливые визуальные формы.

«Эффект бабочки»

Как мы видели на примере преобразования пекаря, для хаотических систем характерна чрезвычайная чувствительность к начальным условиям. Мельчайшие изменения в начальном состоянии системы со временем приводят к крупномасштабным последствиям. В теории хаоса это называется «эффектом бабочки». Основой для названия послужило полушутливое утверждение, что бабочка, всколыхнув сегодня воздух в Пекине, может через месяц оказаться причиной бури в Нью-Йорке. Эффект бабочки был открыт в начале 1960-х годов метеорологом Эдвардом Лоренцом, разработавшим очень простую модель погодных условий, состоящую из трех связанных нелинейных уравнений. Он обнаружил, что решения его уравнений чрезвычайно чувствительны к начальным состояниям. Начинаясь практически в одной точке, две траектории будут развиваться совершенно по-разному, исключая возможность каких бы то ни было заблаговременных предсказаний17.

Это открытие привело в замешательство все мировое научное сообщество, поскольку ученые давно привыкли полагаться на детерминированные уравнения для предсказания с большой точностью таких феноменов, как солнечные затмения или появление комет. Казалось непостижимым, что четко детерминированные уравнения движения могут привести к непредсказуемым результатам. И все же именно это обнаружил Лоренц. По его собственным словам: