Шаги за горизонт - Гейзенберг Вернер Карл. Страница 63

Отыскание общих признаков может при известных обстоятельствах оказаться весьма важным познавательным актом. Уже на первых этапах своей истории человек должен был, например, осознать, что сравнение, скажем, трех коров с тремя яблоками указывает на их общую характеристику, а именно ту, которая выражается словом «три». Формирование понятия числа составляет решающий шаг, выводящий человека из той сферы мира, которая дана ему непосредственно в ощущениях, и погружающий его в сплетение рационально постигаемых структур мышления. Утверждение, что два ореха и два ореха составляют вместе четыре ореха, остается в силе, даже если мы заменим слово «орех» словом «хлеб» или названием какого угодно другого предмета. Его, следовательно, можно обобщить и облечь в абстрактную форму: два и два — четыре. Это было важным открытием. По-видимому, уже достаточно рано люди осознали присущую понятию числа особую способность упорядочивать, а это привело к тому, что некоторые числа стали толковать символически. С точки же зрения современной математики отдельные числа не так важны, как сама операция счета. Именно эта операция порождает непрерывный ряд натуральных чисел и внутренне предполагает все соотношения, изучаемые, например, в теории чисел. Освоив счет, люди сделали решающий шаг в сферу абстракции, был открыт путь, ведущий к математике и математическому естествознанию.

Теперь мы уже в состоянии перейти к изучению феномена, с которым мы постоянно будем встречаться в дальнейшем на разных уровнях абстрактности в математике или в естественных науках Нового времени. По отношению к процессу развития абстрактного мышления в науке его можно было бы назвать чем-то вроде прафеномена, [88] — хотя Гёте, разумеется, не использовал бы это изобретенное им выражение в подобном контексте. Феномен этот можно назвать, положим, развертыванием абстрактных структур. Понятия, первоначально полученные путем абстрагирования от конкретного опыта, обретают собственную жизнь. Они оказываются более содержательными и продуктивными, чем можно было ожидать поначалу. В последующем развитии они обнаруживают собственные конструктивные возможности: они способствуют построению новых форм и понятий, позволяют установить связи между ними и могут быть в известных пределах применимы в наших попытках понять мир явлений.

Например, из понятия счета и связанных с ним простых операций вычисления развилась в дальнейшем — отчасти в Античности, отчасти в Новое время — сложная арифметика и теория чисел. Эти науки открыли, по сути дела, только то, что с самого начала было заложено в понятии числа. Далее, число и развитое на его основе учение о числовых отношениях позволили измерять и сравнивать отрезки. Отсюда возникла наука геометрии, которая в концептуальном отношении выходит за пределы учения о числе. Уже попытка пифагорейцев положить теорию чисел в основание геометрии натолкнулась на трудности, связанные с отношением несоизмеримых отрезков. В результате они должны были расширить совокупность известных чисел, они были в какой-то мере вынуждены изобрести иррациональное число. Двигаясь дальше, греки пришли к понятию континуума и к знаменитым парадоксам, которые впоследствии были изучены философом Зеноном. Мы, впрочем, не собираемся здесь углубляться в трудности, с которыми было связано развитие математики, нам важно просто показать, какое богатство форм заложено в понятии числа и может быть в нем раскрыто.

Итак, абстрагирование может происходить следующим образом: сформированное вначале абстрактное понятие начинает жить собственной жизнью, оно дает начало новым формам или упорядочивающим структурам, изобилие которых превосходит все ожидания. Впоследствии же эти структуры могут оказаться полезными в понимании явлений окружающего мира.

В связи с этим основным феноменом разгорелась пресловутая полемика о том, что же, собственно, является объектом математики. Вряд ли можно сомневаться в том, что в математике мы имеем дело с настоящим познанием. Но познанием чего? Описываем ли мы в математике нечто объективно сущее, нечто такое, что в каком-то смысле существует независимо от человека, или же математика представляет собой всего лишь выражение способности человеческого мышления? Не являются ли выводимые в математике законы просто утверждениями о структуре человеческого мышления? Я не намерен заниматься здесь этими трудными проблемами всерьез, хочу лишь высказать несколько соображений, подтверждающих объективный характер математики.

Не лишено вероятности, что на других планетах, скажем на Марсе, а если нет, то в других солнечных системах, существует нечто похожее на жизнь. И безусловно, следует считаться с той возможностью, что на каком-нибудь другом небесном теле живут существа, у которых способность к абстрактному мышлению развилась достаточно, чтобы создать понятие числа. Если это так и если они строят на основе понятия числа математическую науку, то они придут к тем же теоретико-числовым утверждениям, что и мы, люди. Арифметика и теория чисел в принципе не могут быть у них другого вида, чем у нас; их результаты должны совпадать с нашими. Следовательно, если считать математику набором утверждений о мышлении человека, то, во всяком случае, речь идет о мышлении как таковом, а не просто о нашем человеческом мышлении. Поскольку вообще существует мышление, математика должна быть одинаковой. Это утверждение можно сопоставить с другим, относящимся к области естественных наук. На других планетах или на еще более удаленных небесных телах, несомненно, действуют те же самые законы природы, что и у нас. Это вовсе не просто теоретическое допущение; ведь с помощью телескопов мы можем убедиться в том, что там присутствуют такие же, как у нас, химические элементы, что они образуют те же самые химические соединения и свет, который они испускают, имеет ту же самую спектральную структуру. Но не станем пока выяснять, имеет ли этот эмпирический естественнонаучный факт какое-либо отношение к тому, что мы только что говорили о математике, а если имеет, то какое.

Прежде чем переходить к развитию естественных наук, обратимся еще раз к математике. На протяжении своей истории математика постоянно формировала новые, все более емкие понятия и поднималась, таким образом, на новые уровни абстрактности. Область чисел расширилась, включив в себя иррациональные числа, а затем комплексные числа. Понятие функции открыло доступ в царство высшего анализа, дифференциального и интегрального исчисления. Понятие группы оказалось продуктивным в алгебре, геометрии и теории функций. Оно навело на мысль о том, что на высшем уровне абстрактности удастся, быть может, упорядочить и понять всю математику, во всем многообразии ее дисциплин с единой точки зрения. В качестве абстрактной основы такого объединения всей математики была разработана теория множеств. Трудности теории множеств вынудили в итоге перейти от математики к математической логике, которая нашла свое развитие в 20-х годах, особенно в работах Давида Гильберта и его сотрудников в Геттингене [89]. Каждый раз приходилось подниматься с достигнутого уровня абстрактности на следующий, поскольку в той ограниченной области, где проблемы первоначально возникли, их нельзя было не только по-настоящему решить, но даже и как следует осмыслить. Лишь включение их в контекст более широких проблем открывало возможность по-новому понять их, а это в свою очередь позволяло формировать новые, еще более емкие понятия. Стоило убедиться, к примеру, что аксиому параллельных в евклидовой геометрии доказать невозможно, как была разработана неевклидова геометрия. Но действительное понимание пришло только после того, как был поставлен гораздо более общий вопрос: можно ли доказать в данной системе аксиом, что она не содержит противоречия? [90] Только когда вопрос был поставлен таким образом, была затронута сама суть проблемы. В конце концов развитие математики привело к тому, что основания ее могут обсуждаться только в чрезвычайно абстрактных понятиях, которые, кажется, полностью утратили какую бы то ни было связь с миром предметного опыта. Математик и философ Бертран Рассел высказался так: «Математика — это занятие, в котором никогда не известно, ни о чем говорят, ни истинно ли то, что говорят». (Поясним вторую часть высказывания: всегда можно убедиться в том, что математические формулы правильны, но не в том, существуют ли в действительности объекты, к которым они могли бы относиться.) Но история математики служит нам здесь всего лишь примером, позволяющим признать неизбежность движения к большей абстрактности и к унифицированности. Теперь следует задаться вопросом, происходит ли что-нибудь подобное в естественных науках.