Алгоритмы разума - Амосов Николай Михайлович. Страница 47
Выше говорилось, что для эффективного управления объектом нужны его разные модели: обобщенные — для выбора «стратегии», то есть для планирования ФА, охватывающих длительные процессы, частные — для управления в ограниченных пределах и полные (с разной степенью полноты) — для создания материальной копии и для улучшения системы по избранным критериям.
Разум человека не приспособлен для создания таких полных моделей. Более или менее простые объекты удалось смоделировать, благодаря совершенствованию «внешних» моделей — математических, графических и описательных. Однако все они статичны и «для оживления» должны восприниматься разумом. Кроме того, графики, формулы и слова пригодны лишь для представления простых моделей, потому что при усложнении они быстро становятся необозримыми. Именно по этой причине до сих пор ни одна теория сложных систем «типа живых» не доведена до такой полноты и строгости, как теория физических явлений. Можно предположить, что при существующих возможностях человеческого разума и средствах внешнего моделирования (речь, математика, графика) есть «барьер познаваемости» сложности. Я не рискую категорически утверждать, что он непреодолим, но кажется, что это так. Коллективное мышление здесь не поможет. Разделив сложную систему на множество частей и сделав каждую из них порознь объектом специального изучения, можно уменьшить количественное несоответствие между уровнями сложности объекта и разума. Но это не решает проблемы, потому что в сложных системах поведение части зависит от целого вследствие наличия прямых и обратных «вертикальных» связей между иерархическими уровнями структуры. Следовательно, для познания такой системы нужен синтез.
Вывод отсюда только один: нужны действующие модели большой сложности, то есть принципиально новый код внешних моделей. Математика предлагает аппарат для такого кода, но она статична, и хотя формулы могут отразить динамику объекта, но ручные расчеты по ним весьма ограничивают пределы сложности.
Электроника и ее воплощение в компьютерах предоставляют нам принципиально новые средства создания сложных действующих моделей. Во-первых, они усиливают традиционную математику, поскольку ускоряют счет. Во-вторых, они дают новые возможности для коллективного творчества в виде объединения моделей в единое действующее целое, которое, в пределе, может стать недоступным для полного понимания каждым из участников создания моделей. И наконец, появилась возможность самоорганизации и саморасширения моделей, когда они из средств выражения человеческого разума сами приобретают его качества — способность создания новых моделей.
Действующие модели сложных систем — новый и высший этап оптимального управления этими системами. До тех пор, пока их модели представлены в книгах и «оживают» только в мозге человека, управление остается ограниченным и будет сопровождаться ошибками.
К сожалению, построение таких моделей сопряжено с исключительными трудностями. Дело в том, что они должны быть количественными, как это имеет место в реальных объектах. Существующие ныне науки о сложных системах «типа живых» являются в основном описательными. Они даже не имеют непротиворечивых гипотез по самым основным вопросам функций, не говоря уже о крайней скудости количественных сведений. Первое связано со вторым: для доказательства гипотезы нужно много сопряженных количественных данных, а для их сопоставления, сопряжения необходима модель, то есть обобщенная гипотеза.
Становление любой науки можно представить в такой последовательности:
а) наблюдения объекта органами чувств и словесное описание его структуры и функции;
б) измерения функций и уточнение структур — сбор разрозненной количественной информации;
в) синтез «полной» модели объекта, представляющей его теорию с различной степенью обобщенности. Я называю эту модель реальной.
Все науки о живых системах находятся приблизительно между второй и третьей фазами: сведений уже много, а полные модели только начинают создаваться. Процесс этот оказался очень трудным. По существу, еще нет ни одной полной модели. Мне кажется, что нужен новый подход к этой проблеме. Мы предлагаем его в виде метода эвристического моделирования.
Метод эвристического моделирования
Принцип метода состоит в том, что создается математическая модель объекта на основании описательной гипотезы о его структуре и функциях с использованием имеющихся в литературе количественных данных и добавлением недостающих путем предположений, построенных исходя из гипотезы и качественных сведений. Естественно спросить: зачем нужна такая модель и чем она лучше словесного описания. Конечно, она не является реальной моделью. Однако создание ее имеет смысл и представляется мне неизбежным этапом на пути построения реальной модели. Значение эвристической модели в следующем :
а) она требует формулирования более или менее непротиворечивой гипотезы. Противоречия неизбежно вскрываются, когда при построении модели слова приходится заменять цифрами, а также при дальнейшем исследовании готовой модели. Важно, чтобы она вела себя адекватно объекту по возможности в широком диапазоне режимов;
б) создается язык будущей реальной модели;
в) модель четко формулирует задачи для экспериментов: нужно получить определенную количественную информацию для уточнения наиболее спорных мест;
г) по мере получения новых экспериментальных данных гипотетическая модель приближается к реальной;
д) модель можно исследовать вместо объекта, и она позволяет предположить его новые свойства;
е) наконец, ее можно использовать для управления объектом в тех пределах ее деятельности, где она достаточно точно совпадает с объектом.
Конечно, значимость отдельных пунктов меняется в зависимости от объекта.
Для создания эвристической модели предлагается типовой план:
1. Формирование цели работы или назначения модели: например, как этап в изучении объекта, как инструмент управления, для отработки языка, для проектирования экспериментов и пр. От цели зависит все последующее.
2. Выбор уровня модели. Все сложные системы построены по иерархическому принципу. Степень обобщенности модели определяется тем нижним структурным уровнем, начиная с которого модель должна воспроизводить объект. Уровень определяется назначением модели, наличной информацией и возможностями ее переработки. Для управления достаточны высокие уровни, для создания новой системы и ее изучения желательны, по возможности, низкие уровни. Пример: для понимания механизмов рака нужно моделировать организм с уровня макромолекул, а для управления кровообращением достаточно начинать с уровня органов.
3. Формирование качественной гипотезы о структуре и функциях объекта в пределах, ограниченных целями. Обычно приходится выбирать между несколькими противоречащими друг другу гипотезами. Первый выбор определяется общей точкой зрения авторов. В последующей работе гипотеза подвергается изменениям, если возникают непримиримые противоречия.
4. Построение блок-схемы объекта. Элементы, подсистемы и связи определяются гипотезой и выбранным нижним уровнем структур.
5. Выбор значимых переменных (ограничение числа связей). Сначала определяются все известные переменные для каждого из элементов, потом выбираются, согласно гипотезе, значимые с учетом поставленной задачи. Таким образом, уточняются связи и строится структурная схема объекта, которая становится основой модели.
6. Установление по тем же принципам внешних «входов» системы — сначала определяются все внешние воздействия, потом из них выбираются значимые для сформулированных целей. Устанавливаются граничные условия.
7. Установление характеристик элементов, то есть зависимостей «входы» — «выходы» и «время». Это наиболее произвольный и сложный этап работы, так как данные литературы либо противоречивы, либо недостаточны, либо вообще отсутствуют. Статические и динамические характеристики каждого элемента могут быть выражены графиками, алгебраическими или дифференциальными уравнениями, их системами.