Эпистемология классическая и неклассическая - Лекторский Владислав Александрович. Страница 61

Может ли опыт быть безошибочным?

Однако всякий опыт имеет одну интересную особенность. Он никогда не дает вам стопроцентной гарантии того, что ваше знание совершенно безошибочно, что оно не является в чем-то односторонним. Могут выясниться такие обстоятельства, которые заставят вас уточнить ваши представления, а, может быть, и совсем отказаться от вашего мнения, которое до сих пор вполне соответствовало тому опыту, который у вас имелся.

Вы, например, можете быть уверены в том, что превосходно знаете Москву, все ее площади, улицы и переулки, ее старые и новые районы. Вы решили принять участие в конкурсе на знание Москвы (такие конкурсы иногда проводятся). Вас привезли в новый район Москвы, и вдруг вы обнаруживаете, что не можете ориентироваться. Оказывается, ваше знание Москвы было весьма неточным, оно нуждается в серьезном исправлении.

Вам кажется, что вы хорошо знаете одного человека, вашего товарища по школе. Вы много лет учились с ним в одном классе, обсуждали многие вопросы, и каждый раз ваши мнения совпадали. Но вот ваш товарищ, оказавшись в сложной ситуации, совершает такой поступок, которого вы никак от него не ожидали, который противоречит всему тому, что вы до сих пор о нем знали. Это значит, что либо ваш товарищ искусно маскировался и никогда не был тем, за кого он себя выдавал, либо то, что его поведение до сих пор соответствовало обычным ситуациям, но не ситуациям сложным и неожиданным.

Казалось бы, себя-то вы уж наверняка знаете безошибочно (и даже знаете о себе то, что никто, кроме вас, не знает). Ни и это, оказывается, не совсем так. Вы тоже, попав в непривычную и сложную ситуацию, можете обнаружить в себе такие черты (хорошие или плохие), о которых вы до сих пор не подозревали. Вы можете не отдавать себе отчета в некоторых ваших настроениях и душевных конфликтах, которые выявятся только потом, но которые существуют уже сейчас, хотя и не осознаются вами.

Новые документы и исторические свидетельства могут существенно изменить наши представления о революции 1917 г. (это, действительно, произошло недавно).

Казалось бы, сказанное не распространяется на знание законов. Ведь никто и ничто не может отменить законов механического перемещения, распространения света, движения тока в электрической цепи, происхождения и развития видов. Но оказывается, что и это наше мнение не совсем точно. Конечно, сформулированные Ньютоном три закона механики никакое дальнейшее развитие науки отменить не может. Обратим однако внимание на то, что при формулировке закона F = ma Ньютон предполагал, что как та, так и а могут быть какими угодно (в этом он, как и многие ученые после него, видел всеобщность своего закона). Между тем, в XX веке наука выяснила, что в случае очень больших скоростей и очень больших или очень малых масс законы классической механики не действуют. Действие этих законов относится только к движению тел средних размеров и скоростей, то есть тех тел, с которыми мы имеем дело в нашем обычном опыте. Значит, и наше понимание законов науки и уж во всяком случае знание границ области, в которой они действуют, тоже может меняться по мере изменения нашего опыта.

Математическое знание и опыт

Между тем, каждому из нас ясно, что с математикой дело обстоит совершенно иначе. Мы не можем себе представить, чтобы при каких-то обстоятельствах 2 + 3 было бы не равно 5, а сумма углов треугольника не была бы равна двум прямым. Конечно, когда мы учимся считать, мы первоначально используем какие-то конкретные предметы: сначала палочки, потом пальцы. В геометрии мы чертим на доске или на бумаге изображения треугольников, прямоугольников, окружностей, производим с этими изображениями определенные действия: передвигаем их в плоскости иЛи в пространстве, вращаем, достраиваем их и т. д. Палочки, наши пальцы, геометрические изображения, действия с этими изображениями — все это относится к миру нашего опыта и предполагает использование органов чувств: в частности, зрения и осязания. Казалось бы, математическое знание в этом отношении ничем не отличается от всякого другого. Однако отличие есть, и при том весьма существенное. Когда мы уже научились считать, мы начинаем складывать, умножать и делить уже не 3 палочки, не 2 вороны и не 6 бубликов, а отвлеченные числа 2, 3, 6, и понимаем при этом, что результаты наших действий относятся к любым возможным предметам и что правильность этих результатов совершенно не зависит от возможного изменения нашего опыта. Мы можем представить себя на какой-то другой планете, которая во всех отношениях совершенно не похожа на нашу Землю, мы можем вообразить, что мы летим на космическом корабле со скоростью, близкой к скорости света. Но мы прекрасно понимаем, что и в этих условиях 2 + 3 будет обязательно равно 5, a 5x5 — 25. Нам ясно и то, что всегда, при всех мыслимых условиях будет справедливым положение, что (а + Ь) = а2 + Ь2 + 2аЬ, какие бы числа мы не подставляли в это уравнение и к каким бы конкретно предметам эти числа ни относились. Для того, чтобы производить арифметические действия, нам не нужно обращаться к опыту. Нам не нужен опыт и для проверки верности результатов наших действий. Нам не требуется никакое опытное знание для того, чтобы доказывать новые алгебраические теоремы. Для этого достаточно иметь карандаш и бумагу и оперировать определенными значками и символами. Знания в математике получаются чисто логическим путем, дедуктивно, без обращения к опыту, и если мы не нарушаем правил логики, полученные нами результаты будут не просто истинными, а совершенно истинными, потому что никакой возможный опыт не может их отменить. Можно возразить, что сказанное относится к арифметике и к алгебре, но не к геометрии, которая невозможна без действий с наглядными, т. е. зрительно воспринимаемыми изображениями, а значит, без определенного рода опыта. Однако если мы повнимательнее присмотримся к тому, что мы делаем, доказывая геометрические теоремы, если мы начнем размышлять о том, каков геометрический опыт, мы обнаружим удивительные вещи. Конечно, мы не сможем доказать теорему о сумме углов треугольника, если не нарисуем изображение треугольника и не будем производить действий с этим треугольником в поле нашего зрения (т. е. если мы не сможем видеть результаты наших действий с треугольником на листе бумаги или на доске). Обратим однако внимание на то, что этот треугольник какой-то странный. Ведь у каждого нормального треугольника, с которым мы имеем дело в нашем обычном опыте, стороны должны состоять из чего-то материального: из проволоки, из деревянных планок, из пластмассовых стержней и т. д. А это значит, что они будут иметь не только длину, но и определенную ширину и толщину, не будут идеально прямыми. Треугольник будет обязательно иметь определенный размер и форму (т. е. будет либо косоугольный, либо тупоугольный и т. д.). Между тем, треугольник, с помощью которого мы осуществляем наше геометрическое доказательство, как бы не имеет ни размера, ни формы (потому что может быть любого размера и формы), его стороны не имеют ни толщины, ни ширины, а только длину и являются идеально прямыми (т. е. не могут нигде хотя бы чуть-чуть изгибаться, что так естественно в нашей обычной жизни). В этой связи мы начинаем вспоминать и множество других странных вещей, принятых в геометрии (при формулировке ее исходных аксиом и постулатов). Ведь, например, точка в геометрии не имеет ни длины, ни ширины, ни толщины (ясно, что подобную точку мы никогда не сможем встретить в нашем привычном мире; если она и существует, то в каком-то другом, «идеальном» мире, совершенно не похожем на наш). Мы начинаем подозревать, что в геометрии так же, как в алгебре, главную роль играет логическая строгость доказательства, дедуктивного вывода, а наглядность играет лишь вспомогательную роль. Действительно, в процессе развития математики было обнаружено, что геометрические образы можно поставить в соответствие с некоторыми алгебраическими функциями и доказывать геометрические теоремы с помощью алгебраических действий. Оказывается, использование наглядных пространственных образов вовсе не обязательно для получения новых результатов и в геометрии. В свете сказанного вы, наверное, не удивитесь тому факту, что ряд выдающихся математиков-геометров были слепыми.