Тайны пространства и времени - Комаров Виктор Ноевич. Страница 6

Применяются, например, экспертные опросы. Делаются попытки оценить воздействие той или иной научной работы на развитие науки по числу ссылок на нее в трудах других исследователей. Однако все эти и другие подобные способы в силу целого ряда причин дают лишь весьма приблизительные результаты…

Тем не менее, несмотря на все трудности, связанные с его практическим применением, принцип Коперника стал идейным фундаментом всего дальнейшего развития науки, и можно считать, что именно с этого момента появилось естествознание в его современной форме.

В дальнейшем на протяжении нескольких столетий поиски этой «внутренней сущности» явлений велись с позиций так называемой классической физики, основанной на работах Галилея и Ньютона – основоположников классической механики, науки, претендовавшей на описание и объяснение всех без исключения явлений природы. Усилиями механики была построена соответствующая картина мира и сложился особый стиль научного мышления, который постепенно стал господствующим стилем мышления эпохи.

Механистический подход классической физики к познанию мира выразил Пьер Лаплас – один из выдающихся ее представителей: «Дайте мне положения и скорости всех частиц в мире, и я совершенно точно рассчитаю все будущие события на вечные времена»…

К концу XIX столетия многие думали, что физическая картина мира в основном завершена, и осталось уточнить лишь некоторые мелкие детали. Однако подобные представления оказались обманчивыми и очень скоро были опровергнуты.

На рубеже столетий

Дальнейшее развитие физической науки привело к выяснению целого ряда фактов, которые не укладывались в прокрустово ложе чисто механических представлений классической науки. Чтобы осмыслить эти факты и найти им объяснения, потребовалась разработка новых, более общих теорий. Проанализировав результаты опыта Майкельсона, показавшего, что скорость света не зависит от скорости источника, А. Эйнштейн создал специальную теорию относительности (СТО). Затем тот же Эйнштейн, сопоставив две, казалось бы, далекие друг от друга «вещи» – инерцию и тяготение, – разработал новую теорию гравитации – общую теорию относительности (ОТО), которая пришла на смену ньютоновской теории тяготения и отождествляла гравитацию с искривлением, то есть геометрическими свойствами пространства.

Кардинальные открытия были сделаны и в других областях физики. В 1895 году были обнаружены рентгеновские лучи, а вскоре – и явление радиоактивности. Э. Резерфорд открыл атомное ядро, а еще немного спустя М. Планк выдвинул идею квантования энергии, заложив тем самым основы квантовой физики.

Эта революция в области физики охватила и многие другие области естествознания и заставила по-новому взглянуть на сам процесс научного познания. Стало ясно, что любые научные теории имеют определенные «границы применения», в пределах которых они хорошо объясняют все известные факты. Но в принципе всегда могут быть обнаружены факты, лежащие за этими пределами. И тогда требуется создание новых более общих теорий, в рамки которых укладываются и ранее известные факты и новые. При этом прежние теории не отбрасываются, они остаются справедливыми в границах своей применимости, становятся как бы предельными случаями теорий более общих.

Становление новой неклассической физики не могло не сказаться и на формировании соответствующего ей неклассического стиля научного мышления.

Революция в астрономии

В середине XX столетия революция произошла и в современной астрономии. Хотя она и носила локальный характер, тем не менее внесла достаточно существенные коррективы в сложившиеся к тому времени взгляды на мир.

До того Вселенная представлялась стационарной, то есть считалось, что она изменяется с течением времени плавно и постепенно. Однако в дальнейшем был обнаружен целый ряд «нестационарных» космических объектов, в которых за короткие, по астрономическим масштабам, промежутки времени происходили качественные изменения, сопровождающиеся выделением колоссальных количеств энергии. К числу подобных объектов относились, например, квазары (о которых подробнее мы поговорим позже), а также некоторые галактики. Вообще выяснилось, что нестационарные явления происходят буквально на всех уровнях существования материи во Вселенной. У астрофизиков даже вошел в обиход термин «взрывающаяся Вселенная».

Известный астрофизик академик В.А. Амбарцумян предположил, что их природа связана с какими-то еще неизвестными нам физическими процессами и еще не открытыми современной наукой законами физики.

В результате сложилось отчетливое представление о том, что Вселенная – это грандиозная физическая лаборатория, в которой мы можем наблюдать такие явления, которые не можем воспроизвести и исследовать в земных лабораториях.

Как и другие революции в науке, революция в современной астрономии связана не только с обнаружением новых, неизвестных ранее фактов, но и с рядом новых методологических проблем. В частности, сложились два принципиально противоположных подхода к пониманию сущности эволюционных процессов, протекающих во Вселенной.

Один из них получил название «классического». Его сторонники считают, что звезды и галактики образуются в результате конденсации холодного газа. Согласно концепции, разработанной В.А. Амбарцумяном и учеными Бюраканской обсерватории, расположенной под Ереваном, звезды и галактики образуются в результате распада – быть может, взрывного распада, очень плотных «дозвездных тел».

Расходятся последователи упомянутых концепций и в способах исследования. «Классики» придерживаются метода построения теоретических моделей. Любое предположение они стараются облечь в математическую форму и с помощью введения вспомогательных «подгоночных» параметров получить желаемый результат – согласовать модель с фактами.

Академик же Амбарцумян считал, что к построению математической теории можно приступать только при наличии достаточного количества фактов.

Постнеклассическая наука

Как мы уже отмечали, основу неклассической науки составили такие фундаментальные физические теории как специальная и общая теории относительности и квантовая механика. Неклассическая наука определяла характер естествознания вплоть до 70-х годов XX столетия. Но затем, в результате использования в естествознании компьютерных технологий, подход к изучению тех или иных проблем изменился. Если раньше исследование природы развивалось по отдельным, в значительной мере обособленным направлениям, то для современного естествознания стал характерным комплексный подход к исследованию различных, часто разнородных, на первый взгляд, явлений.

Еще Эйнштейн пытался создать единую теорию, которая объединила бы электромагнитные явления и гравитацию. Однако ему не были тогда известны сильные (ядерные) и слабые (с участием нейтрино) взаимодействия. К тому же он принципиально отвергал квантовую механику. Поэтому в то время его попытки к успеху не привели.

Однако в истории науки нередко складываются парадоксальные ситуации. К их числу можно отнести и создание квантовой теории поля, которая представляет собой синтез отвергавшейся Эйнштейном квантовой механики и разработанной тем же Эйнштейном специальной теории относительности. В свою очередь, на основе этой теории была построена квантовая электродинамика, описывающая взаимодействие между электронами и фотонами и с очень большой степенью точности подтвержденная многочисленными экспериментами. Оказалось, что электромагнитные взаимодействия заряженных частиц обусловлены тем, что эти частицы обмениваются фотонами.

Затем аналогичная теория была создана и для сильных взаимодействий – квантовая хромодинамика. В основе этой теории лежит представление о том, что составные части атомных ядер – нуклоны состоят из особых элементарных частиц, обладающих дробными электрическими зарядами – кварков. В настоящее время считается, что в природе существуют кварки нескольких различных типов или «ароматов», и для каждого кварка имеется соответствующий антикварк. Что же касается взаимодействия кварков в нуклонах, то квантовая хромодинамика объясняет его обменом особыми безмассовыми частицами – глюонами.