Онтология математического дискурса - Гутнер Г Б. Страница 24
3. Рассматриваемая далее структура античной теоремы была описана Проклом в "Комментариях к первой книге начал Евклида". См. комментарий к первому предложению в [78], c. 180-181. Интересная интерпретация этой, установленной у Прокла структуры имеется в статье А.Родина "Теорема" [49]. Родину принадлежит перевод на русский язык терминов, используемых Проклом для обозначения частей теоремы. вернуться в текст
4. В [76] приведена довольно обширная литература по вопросу трансцендентального схематизма. Там же указано на многочисленные (и на наш взгляд вполне оправданные) жалобы многих исследователей на трудность и темноту данной проблемы. вернуться в текст
5. Проблема взаимодействия звучащего и незвучащего в музыке подробно рассмотрена в книге М. Аркадьева [3]. В ней музыкальное произведение представлено как развертывание звучания в непрерывной незвучащей среде, названной автором "музыкальным временем". Последнее не является безразличным вместилищем для звуков, но находится с ними в сложном взаимодействии. Подобное описание музыкального произведения оказывается неожиданно близким к нашему представлению математического дискурса. вернуться в текст
6. Рассуждение указывающее на трудность в рассмотрении общих понятий, связанную с их бесконечным умножением, была впервые указана у Платона в "Пармениде", а затем у Аристотеля в "Метафизике" (I,9). В обоих случаях, впрочем, аргументация несколько отлична от приводимой здесь, поскольку речь в названных книгах идет о самостоятельном (или, как выражается в [35] Г.Г. Майоров, "субсистентном") существовании идей. Наше рассуждение ближе к рассуждению Боэция ([9], c.25). вернуться в текст
ГЛАВА 4 Именование и существование в структуре дискурса
1 Имя и действительность
Изучая структуру теоремы, мы оставили без внимания одно важное обстоятельство. Актуализируя впервые возможное понятие, т.е. предъявляя в экспозиции единичный действительный объект, мы не просто нарисовали его, но еще произнесли при этом: "Пусть ABC - треугольник".
Приведенная фраза указывает, прежде всего, на то, какое возможное понятие было актуализировано в экспозиции. Но кроме того, она еще называет объект, появившийся при этом событии. Выделение соответствующей понятию единичной конструкции сопровождается именованием. Последнее можно считать (в данном примере) неизбежным следствием актуализации. Единичный предмет может быть назван и тем отлич?н от других единичных предметов. Однако, поскольку по поводу этого единичного предмета разворачивается некий дискурс, он не только может, но и должен быть назван. Имя призвано указывать на этот предмет в ходе дальнейшего дискурса. Имя свидетельствует о наличности этого предмета, его постоянной предъявленности рассуждению. Иными словами, имя есть коррелят действительности предмета (или объекта что в данном случае более точно). Можно считать, что именование неизбежно происходит при актуализации, поскольку даже если мы не придумаем для объекта особого имени (как, например, ABC), то мы все равно должны будем сопровождать его появление каким-то указательным местоимением (этот треугольник) или хотя бы жестом. В противном случае актуализация просто не будет замечена. Имя фиксирует актуальный объект для последующего дискурса. К нему происходят многократные обращения, т.е. оно само постоянно воспроизводится в виде некоторого следа. Но многократность воспроизведения означает наличие схемы, по которой это имя произведено и благодаря которой оно может быть опознано как одно и то же при разных воспроизведениях. К имени, следовательно, мы должны применить тот же набор категорий, который применялся к именуемому объекту. Во всяком случае, написанное или произнесенное имя само является действительным объектом, а именование событием, актуализацией, предъявлением этого единичного объекта. Впрочем, пока мы обязаны констатировать некую несамостоятельность имени. Дискурс разворачивается не о нем. Более того, не ставится вопрос о его возможности. Оно возможно всегда, когда возможен обозначаемый им предмет. Хотя возможно оно и само по себе, и вскоре мы увидим насколько это важно. Пока что отметим еще, что для имени в любом случае важна необходимая связь элементов. Назвав треугольник ABC, мы в дальнейшем не можем поставить на место какой-либо из этих букв - другую. Это сразу приведет к разрушению дискурса.
Итак, оставаясь зависимыми от именуемого объекта, имена все же обретают собственную объективность. Эта объективность состоит в том, что они конструируются согласно определенным общим правилам и появляются в дискурсе как действительные объекты. Это особенно ясно видно при фиксации в дискурсе геометрических конструкций, появившихся в результате определенных операций над более простыми конфигурациями. Так, например, построив угол, равный сумме двух других, названных a и b, мы конструируем новое имя: a+b. Такое конструирование может оказываться важной составляющей для тех двух частей теоремы, которые описывают единичный объект - для детерминации и доказательства. Причем конструирование имен может породить новый дискурс, разворачиваемый как правило в пределах двух названных частей. Здесь могут фигурировать общие суждения, относящиеся к именам. Таковы, например, общие посылки в силлогизмах 4 и 5 в 2 третьей главы.
Однако, обладая некой объектностью, имена все же не являются здесь объектами в полном смысле слова. Пока мы не можем определить особого понятия, которое бы актуализировалось с помощью имени. Они остаются как бы соучастниками актуализации тех понятий, которые являются основными для дискурса, т.е. понятий геометрических объектов. Потому событие именования представляется здесь вторичным по отношению к событию построения. Однако способность имени превращаться в самостоятельный объект оказалась небезразличной для других разделов математики. 2 Математический дискурс, основанный на именовании
Как самостоятельный объект имя выступает прежде всего в алгебре. Чтобы убедиться в этом, следует рассмотреть построение алгебраической теоремы и попытаться найти в ней те части, которые присутствовали в теореме геометрии. Легко убедиться, что алгебраическая теорема действительно поддается тому же самому расчленению. Однако в ней обнаруживаются интересные особенности.
Рассмотрим пример. Известная теорема утверждает, что любой полином с комплексными коэффициентами может быть представлен в виде произведения линейных множителей, количество которых равно степени полинома.
Приведенное общее утверждение естественно рассматривать как protasis теоремы. Мы имеем дело с предположением о возможности общего понятия, которое должно быть реально синтезировано в ходе доказательства. Естественный ход, который в любом учебнике алгебры является прологом к доказательству, полностью повторяет экспозицию и детерминацию евклидовой теоремы. Ход этот осуществляется примерно так:
Пусть имеется полином a0+a1 z+....+an zn , тогда
a0+a1 z+....+an zn = an (z-z1)...(z-zn),
где z1,..zn - комплексные числа.
Очевидно, что все использованные в приведенной записи буквы суть имена чисел, которые могут быть подставлены вместо них в выражение. Но из этих имен создана совершенно самостоятельная конструкция, единичный объект, построенный по определенным правилам сообразно своему понятию. Как и в геометрии произведен переход от общего утверждения к единичному предмету. Все последующие действия будут состоять в построении новых объектов более сложной конфигурации, состоящих из символов, т.е., в конечном счете из имен. Однако тот факт, что каждый символ, входящий в конструкцию, может в принципе указывать на какое-то число, не особенно важен для алгебры.
Дальнейшее развертывание теоремы обнаруживает еще одно знаменательное отличие от геометрии. В ней, на первый взгляд, нет дополнительного построения. После экспозиции и детерминации сразу же следует доказательство, которое, как и в геометрии, есть процедура, оперирующая с именами объектов. Но что представляет собой эта процедура в данном случае? Это - последовательность алгебраических выкладок, совершаемых по определенным правилам. Иными словами - это конструирование знаковых объектов, связанных в производимой последовательности формул согласно законам алгебры. В конечном счете, все доказательство оказывается созданной по правилам единой конструкцией, в которую утверждение теоремы (точнее, детерминация) включено в качестве составной части. Следовательно, доказательство и дополнительное построение в данном случае попросту совпадают. Текст доказательства и есть здесь та конструкция, которая актуализирует интересующее нас понятие (то понятие, возможность которого предполагалась в утверждении теоремы).