Математика. Утрата определенности. - Клайн Морис. Страница 77
Многие математики в начале XX в. попросту отмахивались от парадоксов, не придавая им особого значения, так как парадоксы относились к теории множеств — тогда еще новой области математики, лежащей далеко не в центре интересов математического мира. Но их оставшиеся в меньшинстве более проницательные коллеги понимали, что парадоксы затрагивают не только классическую математику, но и логику, и это их серьезно тревожило. Кое-кто пытался следовать совету, который Уильям Джеймс дал в своем «Прагматизме»: «Если вам встретится противоречие, введите более тонкое различие». Некоторые логики, начиная с Френка Пламптона Рамсея (1903-1930), пытались проводить различие между семантическимии истинными(т.е. логическими) противоречиями. «Парадокс слов», «гетерологический парадокс» и «парадокс лжеца» они относили к семантическим парадоксам, так как все эти парадоксы затрагивали такие понятия, как истинность и определяемость (или неоднозначность) того или иного словоупотребления. Предполагалось, что строгое определение таких понятий позволит разрешить семантические парадоксы. С другой стороны, парадокс Рассела, парадокс Кантора о множестве всех множеств и парадокс Бурали-Форти были отнесены к логическим противоречиям. Сам Рассел не проводил различия между семантическими и логическими противоречиями. По его мнению, все парадоксы возникают из-за одной логической ошибки, которую он назвал принципом порочного кругаи описал следующим образом: «То, что содержит всемножество, не должно быть элементом множества». Принцип Рассела можно сформулировать иначе: «Если для того, чтобы определить множество, необходимо использовать все множество, то определение не имеет смысла». Так в 1905 г. Рассел объяснил принцип порочного круга. В 1906 г. его объяснение принял Пуанкаре, предложивший специальный термин «непредикативное определение» (определение, в котором некий объект задается (или описывается) через класс объектов, содержащий определяемый объект). Такие определения незаконны.
Рассмотрим пример, приведенный Расселом в «Основаниях математики» ( Principia Mathematica[95]*, гл. X). Закон исключенного третьего утверждает, что каждое высказывание является либо истинным, либо ложным. Но закон исключенного третьего сам также является высказыванием. Следовательно, вопреки нашим намерениям сформулировать всегда истинный закон логики мы получили высказывание, которое, как и любое другое высказывание, может быть истинным, но может быть и ложным. «Такая формулировка логического закона, — заявил Рассел, — лишена смысла».
Приведем еще несколько примеров. Может ли всемогущее существо создать неразрушимый предмет? Разумеется, может — на то оно и всемогущее. Но коль скоро оно всемогущее, то ему ничего не стоит разрушить что угодно, в том числе и неразрушимый предмет. В этом примере слово «всемогущее» принимает значение из недопустимого множества. Такого рода парадоксы, как отметил логик Альфред Тарский, будучи семантическими, бросают вызов языку в целом.
Предпринимались и другие попытки разрешить названные парадоксы. Противоречие, заключенное в высказывании «Из всех правил имеются исключения», отвергалось некоторыми как лишенное смысла. Существуют предложения, поясняли они, построенные по всем правилам грамматики и тем не менее лишенные смысла, т.е. ложные, как, например, фраза «Это предложение состоит из пяти слов». Аналогично первоначальный вариант парадокса Рассела (предложенный самим Расселом) отвергался на том основании, что класс всех классов, не содержащих самих себя, не имеет смысла или не существует. Парадокс брадобрея «решался» либо ссылкой на то, что такого брадобрея не существует, либо требованием, согласно которому брадобрей должен исключить себя как из класса тех, кого он бреет, так и из класса тех, кого он не бреет (утверждение «Учитель обучает всех, кто ходит к нему на занятия», поясняли сторонники такого решения парадокса брадобрея, не распространяется на самого учителя). Рассел отверг подобное объяснение. В работе 1908 г. он так выразил свое мнение по этому поводу: «Всякий волен в беседе с человеком, у которого длинный нос, заметить: "Говоря о носах, я отнюдь не имею в виду слишком длинные носы". Вряд ли, однако, такое замечание можно считать успешной попыткой обойти больной вопрос».
Слово «все» действительно многозначно. По мнению некоторых логиков и математиков, несколько семантических парадоксов обязаны своим происхождением употреблению слова «все». Так, в парадоксе Бурали-Форти речь идет о классе всех ординальных чисел. Включает ли этот класс ординальное число, соответствующее всему классу? Аналогичным образом гетерологический парадокс определяет некий класс слов. Включает ли этот класс само слово «гетерологический»?
Возражение Рассела — Пуанкаре против непредикативных определений стало общепринятым. К сожалению, такие определения использовались в классической математике. Наибольшие треволнения вызвало понятие наименьшей верхней границы.Рассмотрим множество всех чисел x,заключенных между 3 и 5, но не достигающих этих границ: 3 < x< 5. Верхними границами, т.е. числами, превосходящими все принадлежащие множеству числа, являются числа 5, 5 1/ 2, 6, 7, 8 и т.д. Среди них существует наименьшаяверхняя граница — число 5. Следовательно, наименьшая верхняя граница определена через класс верхних границ, содержащий ту самую границу, которая подлежит определению. Другой пример непредикативного определения — определение максимального значения(максимума) функции на заданном интервале. Максимальное значение — наибольшее из значений, принимаемых функцией на заданном интервале. Наименьшая верхняя граница, как и максимум функции, — фундаментальные понятия математики, и в математическом анализе избавиться от них нелегко. Кроме того, немало непредикативных определений используется и в других случаях.
Хотя непредикативные определения, встречающиеся в парадоксах, действительно приводят к противоречиям, чувство неудовлетворенности не оставляло математиков, так как, насколько они могли видеть, далеко не все непредикативные определения приводили к противоречиям. Такие высказывания, как «Джон — самый высокий игрок в своей команде» или «Это предложение — короткое», заведомо безобидны в этом отношении, хотя они и непредикативны. То же можно сказать и о предложении «Самое большое число в множестве чисел 1, 2, 3, 4, 5 равно 5». Непредикативные предложения используются буквально на каждом шагу. Так, задав класс всех классов, содержащих более пяти элементов, мы тем самым задаем класс, содержащий самого себя. Множество Sвсех множеств, определяемых не более чем 25 словами, также содержит S. Безусловно, обилие в математике непредикативных определений не могло не тревожить ученых.
К сожалению, мы не располагаем критерием, который позволил бы распознавать, приводит ли данное непредикативное определение к противоречию или не приводит. Следовательно, всегда существует опасность, что вновь обнаруженные непредикативные определения приведут к противоречиям. Эта проблема стояла очень остро с самого начала, когда Эрнст Цермело и Анри Пуанкаре впервые взялись за нее. Пуанкаре предложил наложить запрет на непредикативные определения. Один из выдающихся математиков первой половины XX в. Герман Вейль, сознавая, что некоторые непредикативные определения приводят к противоречиям, приложил немало усилий, пытаясь переформулировать определение наименьшей верхней границы таким образом, чтобы это позволило избежать непредикативности. Усилия Вейля не увенчались успехом. Обеспокоенный постигшей его неудачей, Вейль пришел к выводу, что математический анализ логически не обоснован и что некоторыми его разделами необходимо пожертвовать. Наложенный Расселом запрет («Мы не можем при определении множеств исходить из произвольных условий, а затем разрешать всем построенным множествам без разбора быть элементами других множеств») заведомо не давал ответа на вопрос, какие из непредикативных определений можно считать допустимыми.