Путешествие по Карликании и Аль-Джебре - Левшин Владимир Артурович. Страница 30
— Так почему же у Тани получилось правильно?
— Да потому, что корень второй степени из четырёх равен двум, а два и есть как раз половина от четырёх. И это — простое совпадение.
Таня, конечно, покраснела, а Олег (он всегда её выручает), чтобы отвлечь от неё внимание, сделал вывод:
— Значит, возвести число в степень, равную одной пятой, — это всё равно что извлечь из этого числа корень пятой степени. Например:
— Ваша правда, — подтвердила буковка.
— Тогда, наверное, и обратно, — продолжал Олег. — Возвести число в пятую степень — это всё равно что извлечь из него корень степени одна пятая:
Что ты скажешь! Он и на этот раз попал в самую точку!
Тут мне пришло в голову, что если можно возводить числа в положительные степени, то почему бы не попробовать в отрицательные? Буковка посмотрела на меня пристально:
— Уж очень вы торопитесь! Аль-Джебра — государство большое. Для того чтобы с ним как следует познакомиться, нужны не дни, не недели, а годы…
Ещё чего! А как же Чёрная Маска? Так и останется без лица?
Посовещались немного и решили, что довольно ходить вокруг да около. Пора приниматься за дело. Но прежде неплохо бы закусить! То-то мне стали вспоминаться гостеприимные обжоры…
Буковка словно угадала мои мысли:
— Может быть, вы проголодались? Тогда советую зайти в кафе «Абракадабра».
А нам только того и надо!
Хочешь знать, что дальше? Потерпи немножко. Всякому овощу…
Сева.
Нулик-пограничник
(Нулик — отряду РВТ)
Пламенный привет от Нулика-Пограничника! Теперь наша школа называется пограничной. Мы не пропускаем ни одной цифры, пока не узнаем, какой у неё знак отличия: плюс или минус. Один Нулик даже не пустил домой собственную маму, потому что она рассердилась и не хотела отвечать на его вопросы. Кончилось тем, что мама его наказала, пожаловалась моей маме и нашу школу чуть не закрыли.
Хорошо ещё, что у меня такая добрая мама. Она меня простила и даже подарила силомер. Получше вашего-то: волшебный! Выбираешь число, задумываешь, в какую степень его возвести, бьёшь молотком, и гирька сама показывает ответ.
Я принёс силомер в школу, и все стали возводить нуль в разные степени. Но как мы ни старались, гирька ни разу не поднялась выше нуля. Словно её приклеили. Как вы думаете, отчего это? Может, у нас сил не хватает, чтобы ударить как следует?
Потом я надумал сделать то, чего вы не успели: возвести целое положительное число в отрицательную степень.
Но и от этого толку мало: какое число ни возьмёшь, гирька хоть и поднимается, но очень немножко, не выше единицы. Тогда мы взяли большущее число 1000 и возвели его в минус третью степень: 1000-3.
Ухватились за молоток сообща и как трахнем! А противная гирька почти не сдвинулась с места. Что ж это такое? Неужели мама подарила мне испорченный силомер?
Я на неё очень обиделся, но она только рассмеялась. Она вообще любит смеяться. А потом сказала, что если возводить целое положительное число в целую отрицательную степень, то больше единицы никогда не получится. И чем большее число возводишь, тем меньшее число получается. Вот силометр и показал всего-навсего одну миллиардную: 0,000 000 001.
Пришлось поверить на слово. Потому что, отчего это происходит, мама не объяснила. Зато она сказала, что число, которое возводится в степень, называется основанием степени, число, в которое возводится это основание, — показателем степени, а уж сама степень получается только в ответе.
На этом основании я могу сказать, что не только вы меня, но и я вас могу кое-чему научить. Вот как!
Нулик-Пограничник.
Когда же вы напишете про кафе «Абракадабра»?
Карнавал
(Олег — Нулику)
Здравствуй, дружище! Ты просишь рассказать про кафе «Абракадабра», но так случилось, что мы опять туда не попали. Заколдованное оно, что ли? Мы уже были совсем близко, но тут дорогу нам преградило весёлое карнавальное шествие. Впереди всех шли цифры.
Многие держали на плечах маленьких Нуликов, прямо как у нас ребятишек на первомайской демонстрации.
Вслед за цифрами дружно выступили латинские и греческие буквы.
Чётким строевым шагом прошли знаки равенства, за ними — действующие знаки.
Легко подпрыгивали разноцветные точки, похожие на целлулоидовые мячики. Некоторые плавали в воздухе, как воздушные шары.
Вот промелькнули, кувыркаясь на ходу, ловкие гимнасты: знаки сложения и вычитания. Проковыляли на ходулях радикалы. Над ними — ни дать ни взять рой бабочек — порхали показатели корней.
А потом пошли скобки, скобки, скобки… Круглые, квадратные, фигурные…
Позади маршировал сводный оркестр восклицательных знаков.
— Слава доблестным факториалам! — закричали в толпе.
Мы хотели спросить, что за слово такое, но тут эти самые факториалы грянули марш. Разом ударились друг о друга десятки медных тарелок, загремели трубы. Защебетали, словно стая ласточек, флейты, и все кругом запели.
Так никто нам и не объяснил, что такое факториал и что вообще происходит.
— Может быть, это праздник Кирилла и Мефодия? — сказала Таня.
Её мама недавно была в Болгарии. Там каждый год устраивают торжества в честь создателей славянской письменности. В этот день жители надевают свои лучшие платья и выходят на улицу, чтобы посмотреть парад букв. В параде участвуют школьники. Каждый из них изображает какую-нибудь букву.
— При чём тут Кирилл и Мефодий? — фыркнул Сева. — Аль-Джебра — государство математическое. Не пойму только, как сюда попали буквы. Наверное, по недоразумению?
Он, как всегда, сказал это чересчур громко. Вот когда нас наконец услышали!
— Как это — по недоразумению? — возмутились толпившиеся кругом буквы. — Это мы-то по недоразумению? Нас оскорбляют! Нас унижают!
— Да знаете ли вы, — кипятилась латинская буква Тэ, — знаете ли вы, что без нас, может, и не было бы никакой Аль-Джебры!
— Может, и не было бы! — подтвердили хором другие буквы.
Мне с трудом удалось объяснить им, что Сева не хотел никого обидеть. Просто мы здесь впервые и многого ещё не знаем. Буквы сменили гнев на милость и стали наперебой что-то нам объяснять. Но они так волновались и галдели, что ничего нельзя было разобрать.
— Граждане буквы, — сказал я, — говорите по очереди! Так мы легче поймём друг друга.
Тогда из толпы вышел важный Дэ.
— Пусть каждый из вас, — сказал он, — задумает какое-нибудь число. Задумали? Хорошо. Теперь умножьте его на три. Так. Прибавьте четыре. Готово? Теперь пусть каждый скажет, какое число у него получилось.
— Десять! — объявила Таня.
— Нет, девятнадцать! — возразил Сева.
— А у меня шестьдесят четыре, — сказал я.
— Видите, вас трое, и у каждого получилось по-разному. Но в этой игре могут быть тысячи, миллионы участников. Каждый может задумать любое число, и мы получим целую гору ответов. Для того только, чтобы прочитать их — не то что записать, — понадобится уйма времени. А я вот записал на этом клочке бумаги все возможные ответы.
И Дэ показал нам свою запись:
3a+4.
— Позвольте, где же девятнадцать? — всполошился Сева.
— Да здесь же. Вы, как я догадываюсь, задумали число пять. Трижды пять — пятнадцать. Прибавим четыре — получится девятнадцать.
— Но где же тут пять?
— Да вот оно: буква a.