Рассказы о математиках - Чистяков Василий Сергеевич. Страница 39

Уже в гимназии Шмидт в совершенстве владел латынью, немецким языком и немного французским. Он поставил задачу выучить также язык Шекспира и язык Данте и блестяще овладел ими. Однажды он пошел к директору гимназии и потребовал, чтобы ему дали возможность учить древнегреческий язык, который положением о классических гимназиях предусматривался, но не был обязательным. Настойчивость Отто была настолько велика, что директор, после некоторого колебания, согласился пригласить преподавателя по этому предмету. И пришлось этому преподавателю заниматься только с одним учеником, так как других желающих не оказалось. А какая радость была для Шмидта заниматься этим языком! Он получил возможность приобщиться к культуре эллинов и в подлинниках прочесть бессмертных Евклида, Софокла, Гомера…

Но вот годы гимназии позади. Шмидт — студент Киевского университета. По-прежнему горизонт его интересов широк и необъятен. Но из всех отраслей знаний его больше всего привлекает математика. Оно и понятно, почему. Ведь математика — один из твердых фундаментов всего современного естествознания.

Быстро бежит время, а еще быстрее оно бежит, вернее, летит в представлении студента. Рабочий день кажется маленьким, а сделать надо много. Но если дня не хватает, так есть ночь. Часто, очень часто Отто Шмидт засиживался за книгами и собственными думами до утра, не щадя своих сил и здоровья. Конечно, больше всего он занят был тогда предметом своей специальности — математикой, манившей его своими необъятными просторами и весьма таинственными перспективами.

Рассказы о математиках - i_055.png
О. Ю. Шмидт

Молодому Отто хотелось знать все досконально. Прочитанные книги рождали в уме любознательного юноши рой вопросов, ответы на которые надо искать в других книгах, а лучше всего поразмыслить, подумать и найти самому. Вся беда в том, что не хватает времени. И Отто с нетерпением ждал каникул, чтобы вдоволь походить по малоизведанным тропам науки и самому попытать счастья в решении некоторых еще никем не решенных проблем.

Как и следовало ожидать, успехи молодого талантливого математика были скоро замечены. Профессор Д. А. Граве, создавший в России первую алгебраическую школу, привлек Отто Шмидта к работе своего семинара и стал руководить его научными исследованиями. Успехи превзошли всякие ожидания. На втором курсе студент Шмидт за решение одной алгебраической проблемы награждается золотой медалью.

Окрыленный успехами Шмидт приступает к написанию своей знаменитой монографии, посвященной некоторым вопросам современной алгебры («Абстрактная теория групп»).

Советская власть дала возможность расцвести многогранному таланту Отто Юльевича Шмидта. О. Ю. Шмидт стал основателем школы советских алгебраистов, прославивших русскую алгебраическую науку на весь мир. Про него можно сказать, что он был «энциклопедистом XX века».

Как ученый он чрезвычайно разносторонен — математик и астроном, геофизик и географ. Как астроном он прославился выдвинутой им гипотезой о происхождении Земли и других планет. Как географ он проделал огромную работу по освоению советской Арктики.

Шмидт является одним из первых Героев Советского Союза. Несколько лет был вице-президентом Академии наук СССР, начальником Главсевморпути, одним из организаторов и главным редактором Большой Советской Энциклопедии и т. д. Шмидт был депутатом Верховного Совета СССР первого созыва.

Его именем назван остров в Карском море и мыс в западной части Чукотского моря.

Несмотря на большую перегрузку административной и общественной работой, Шмидт никогда не бросал научных исследований по математике. Математикой он не прекращал заниматься и в те памятные дни, когда был в знаменитых арктических экспедициях. Так, находясь на борту легендарного «Челюскина», прокладывавшего нелегкий путь через льды Арктики, Шмидт телеграфировал московским математикам: «Прошу сообщить научной работе нашей специальности тчк Закончен ли Вами учебник алгебры вышла ли моя Теория групп тчк Я написал три работы классической алгебре тчк Сердечный привет дирекции института и товарищам Шмидт».

О. Ю. Шмидт не признавал разделение наук на чистые и прикладные. Он даже считал, что такое деление может нанести вред науке. Ученый-коммунист всегда ратовал за органическую связь науки с практикой социалистического строительства.

По мнению Шмидта, как бы теория ни была абстрактной, рано или поздно она должна найти свое практическое применение.

В 1921 году, когда О. Ю. Шмидт по заданию В. И. Ленина работал членом коллегии Наркомфина, он написал работу «Математические законы денежной эмиссии». Эта работа при существовавшей тогда денежной эмиссии и инфляции была жизненно необходимой. Когда по прямому указанию В. И. Ленина встал вопрос об определении местонахождения железорудных богатств Курской магнитной аномалии, то и здесь не обошлось без «отвлеченной» математики, которую привлек для этой цели О. Ю. Шмидт. Математические выводы ученого о залегании рудных масс вполне оправдались разведкой бурением.

Такой же математический подход О. Ю. Шмидта наблюдается и в разработанной им гипотезе о происхождении планет солнечной системы, содержание и критика которой даются в любом учебнике астрономии. Книга Отто Юльевича «Четыре лекции о теории происхождения Земли» выдержала несколько изданий и переведена на многие иностранные языки.

О. Ю. Шмидт был участником математических съездов. В 1930 году он открывал Первый всесоюзный математический съезд, состоявшийся в Харькове. На съезде он сделал обстоятельный доклад «Роль математики в строительстве социализма». В 1934 году в Ленинграде состоялся Второй всесоюзный математический съезд, на котором Шмидт был избран председателем Всесоюзной математической ассоциации.

Третий всесоюзный математический съезд проходил в Москве в начале июля 1956 года, когда О. Ю. Шмидт был уже тяжело болен. Алгебраическая секция съезда направила к ученому делегацию. Профессор А. Г. Курош по этому поводу писал: «Нам разрешили войти к нему на пять минут, и мы были потрясены его видом, его слабостью.

Тем более изумительным было то, что Отто Юльевич сохранил полную ясность мышления. Наше приветствие его тронуло, и в ответ на него он сказал, что от алгебры он, конечно, уже очень далеко отошел, но что связи с алгебраистами дали ему много и что он их часто с благодарностью вспоминает. В дальнейшем разговоре, касаясь, между прочим, последних событий политической жизни, Отто Юльевич заметил, что перед наукой сейчас открывается совершенно исключительная возможность развития» [93].

Лев Генрихович Шнирельман (1905–1938)

Изумительно быстро продвинулся в области науки талантливый советский математик Лев Генрихович Шнирельман, родившийся в Белоруссии (Гомель).

Еще в школьные годы он обнаружил яркий талант математика. В 12 лет он довольно глубоко изучил теорию алгебраических уравнений и с помощью ее решал весьма трудные задачи алгебры. Ему понадобилось всего два с половиной года, чтобы окончить Московский университет, куда он поступил шестнадцатилетним юношей.

Профессором Шнирельман стал 24 лет. На 28-м году жизни он был избран в члены-корреспонденты Академии наук СССР.

Л. Г. Шнирельман приобрел мировую славу первоклассного математика за решение так называемой проблемы Пуанкаре о трех геодезических линиях и выполнение весьма важных работ по теории чисел.

В первой половине XVIII века петербургский академик Гольдбах в письме к Эйлеру высказал следующее предложение, носящее название проблемы Гольдбаха: доказать, что всякое нечетное число, большее пяти, можно представить в виде суммы трех простых чисел.

Рассказы о математиках - i_056.png
Л. Г. Шнирельман

Вот что писал по этому поводу сам Гольдбах: «Вот моя задача тоже. Возьмем наудачу какое-нибудь нечетное число. Ну, 77. Его можно разбить на три слагаемых: 77 = 53 + 17 + 7, и все эти слагаемые снова простые числа. Возьмем другое, опять наудачу, — 461, и тут 461=449 + 7 + 5, и эти три слагаемые снова простые числа. А можно то же число разбить на три простых слагаемых и другим способом: 257 + 199 + 5. И так дальше. Теперь вполне для меня ясно: всякое нечетное число, большее 5, можно разбить на сумму трех слагаемых, которые являются простыми числами. Но как доказать это?»