Волшебный двурог - Бобров Сергей Павлович. Страница 55
— Значит, когда Мишенька растет, в одних случаях может получиться бесконечный предел, вот как первый раз с суммой, в других — нуль, как для синьориты Одной Энной, а в третьих — просто какое-нибудь число, не равное нулю, как только что у нас получилось? — спросил Илюша.
— Совершенно верно, — отвечал его друг. — Чтобы подтвердить тебе это на знакомом уже примере, вспомним построение с перпендикуляром и наклонной из предыдущей схолии. Если откладывать вдоль перпендикуляра один за другим равные отрезки и соединять получающиеся на перпендикуляре точки с другим концом основного отрезка, к которому восстановить перпендикуляр, то каждая следующая наклонная будет образовывать с основным отрезком все больший и больший угол. Проследи за углами, на которые поворачивается наклонная при переходе от одной точки на перпендикуляре к следующей, и ты увидишь, что эти углы будут все время уменьшаться и стремиться к нулю. Сумма откладываемых отрезков на перпендикуляре будет стремиться к бесконечности, а сумма углов, о которых мы говорим, будет стремиться к прямому углу, как к пределу.
— 218 —
— Но в результате этого процесса угол ведь станет прямым, — сказал Илюша.
— Ну вот, ты опять за старое! — недовольно промолвил Радикс. — Если поворачивать наклонную, то, конечно, можно повернуть ее на такой угол, чтобы она стала параллельной. Однако и здесь тоже замешана та же бесконечность. И ты легко убедишься в этом, если рассмотришь все промежуточные положения ее. И это очень хорошо понимали греческие ученые времен Архимеда. Если говорить о бесконечном процессе удаления точки по перпендикуляру, то, разбивая этот процесс на бесконечное число последовательных этапов, тем самым вводится и бесконечное число этапов в изменении угла, и мы говорим только о том, что происходит при самом этом процессе; при неограниченном удалении точки по перпендикуляру угол неограниченно приближается к прямому как к своему пределу.
— И никогда его не достигает! — воскликнул Илюша.
— Вот именно!— громко воскликнул удивительный Доктор Непроходимых Узлов, который, оказывается, стоял все время рядом с Илюшей и внимательно слушал. — А в каком это смысле «никогда»? Ты, кажется, говоришь о времени? А известна ли тебе древняя притча про Ахиллеса и черепаху? Не известна? Жаль, жаль! Ну, изволь слушать. Представь себе, что самый быстроногий из ахейцев, герой Троянской войны Ахиллес, и некая безвестная черепаха состязаются в беге. Черепаха находится вначале на расстоянии ста шагов впереди Ахиллеса, а ползет она в десять раз медленнее его. Все очень просто. Когда Ахиллес пробежит указанное расстояние, черепаха успеет проползти еще десять шагов. Когда Ахиллес пробежит эти десять шагов, черепаха окажется еще на один шаг впереди. Когда Ахиллес пробежит этот шаг, то черепаха, очевидно… Ну, ты и сам видишь — процесс бесконечный, а следовательно, как ты это только что сказал, Ахиллес «никогда» но догонит черепаху.
— Как так? — спросил Илюша. — Ясно, что Ахиллесу надо будет пробежать… сколько же это выходит?.. всего сто одиннадцать шагов, чтобы догнать черепаху…
— Твое слово «никогда», видишь ли, нехорошо в этом случае по той причине, — пояснил Радикс, — что на самом дело ты ведь не имеешь в виду времени, а хочешь только сказать, что в разложении процесса на этапы придется иметь дело с бесконечным числом этих этапов. К фактическому осуществлению вращения наклонной, протекающему в конечный промежуток времени, или к движению Ахиллеса это прямого отношения не имеет. Нас здесь интересует не время, а именно последовательные этапы процесса. Их удобнее всего было бы просто нумеровать: первый этап, второй и так далее, вовсе не
— 219 —
упоминая о времени. Если тебе придет в голову разлагать какой-нибудь действительный процесс движения на такого рода этапы, то это будет только воображаемая операция. И при подсчете времени, например, надо будет учесть, что действительное движение вовсе не обязано считаться с этим разложением и может проскочить через все твои этапы за конечный промежуток времени. Конечно, это все не очень простые вещи. Здесь есть над чем подумать, но мы пока ограничимся этим…
— Ограничимся? То есть как это ограничимся? — снова окрысился командор. — Ведь молодой человек сказал же, что переменная величина (помнится, там шла речь об угле) никогда не достигает своего предела…
— Но теперь я буду это понимать в том смысле… — заторопился Илюша.
— Ни в каком смысле это не верно, молодой человек! Вот рассмотри такое движение наклонной. Из ее основания по другую сторону основного отрезка я восстановлю к нему перпендикуляр, а около него построю полуокружности одинакового радиуса, с центрами на этом перпендикуляре: одну по одну сторону от него, а следующую, соседнюю с ней снизу, — по другую, и так змейкой все дальше и дальше. Теперь вообрази себе прямую, которая все время проходит через основание этого перпендикуляра и через меняющую свое положение вторую точку, а та, в свою очередь, пробегает построенную то-
— 220 —
бой змейку сверху вниз. Что будет происходить с этой прямой?
— Она начнет поворачиваться сначала в одну сторону, потом немного меньше в другую, потом опять в ту…
— Вот теперь и проследи, хотя бы для сравнения с наклонной, за верхней частью этой твоей прямой: она будет колебаться около перпендикуляра. И, как ты думаешь, в пределе, когда точка по змейке будет удаляться все дальше и дальше, что же ты сможешь сказать об угле, который образует эта прямая с основным отрезком?
— Этот угол будет стремиться к прямому как к своему пределу, — отвечал Илюша. — Каждый раз, когда точка на змейке будет попадать на перпендикуляр, этот угол будет прямым… Но в конце концов…
— Если точка будет двигаться по змейке, то никакого конца концов тут нет. Только колебания около перпендикуляра будут, как говорится, затухать. Но ты мог бы прекратить строить змейку в каком-нибудь месте и заставить точку бежать дальше по перпендикуляру. Тогда у тебя прямой угол появился бы на соответствующем этапе процесса. И дальше он так бы и оставался прямым на всех дальнейших этапах бесконечного удаления точки вниз по перпендикуляру. И в этом случае ты можешь сказать, что в пределе угол, за изменением которого ты следил, будет равен прямому. В последней нашей схолии мы еще покажем тебе нечто в этом роде.
А вслед за этим командор улетел в неизвестность.
— Только вот чего я еще не понимаю, — сказал, вздыхая, Илюша.
— Ты говоришь, что в случае с Ахиллесом и черепахой мы только воображаем разложение процесса на бесконечное количество этапов и что действительное движение происходит непрерывно, без всяких этих этапов. Тогда зачем же такие разложения рассматривать?
— Видишь ли, — ответил Радикс, — на этот вопрос я тебе сейчас коротко ответить не могу. Дальше мы познакомимся с очень важными задачами, в решении которых бесконечные процессы играют основную роль. Тебе дана некоторая конечная величина; ты начинаешь как бы «исчерпывать» ее, и при этом столь ничтожными частицами, что в пределе действительно приходишь к полному ее «исчерпанию». Такое «исчерпание» конечной величины как раз и является одним из самых сильных средств математики, владея которым она и справляется с вопросами, относящимися к непрерывно изменяющимся переменным. Сейчас я могу только привести еще один, уже немного знакомый тебе пример, в котором оказывается полезным способ представления конечной величины в виде предела суммы неограниченно возрастающего числа слагаемых, каждое из которых стремится к нулю.
— 221 —
— Как это может быть? — спросил Илюша. — Если каждое слагаемое стремится к нулю, то, по-моему, и их сумма…
— Ты забываешь, что их число неограниченно возрастает.
Начнем с простейшего случая. Представь себе, что единицу ты разделишь сначала на две части, возьмешь сумму этих двух дробей и получишь опять единицу. Но совершенно такой же результат получится, если разделить единицу на три части и сложить полученные три дроби, и так далее. Если ты произведешь деление на n равных частей, то каждая из них выразится дробью 1/n, а при неограниченном возрастании n будет бесконечно малой. Но если при каждом значении и составлять сумму и таких дробей, то все время будет получаться единица.