Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - Гомес Жуан. Страница 17

Используя определения гиперболических синуса и косинуса, можно вывести и другие тригонометрические тождества, аналогичные известным тождествам из евклидовой геометрии. Например, мы можем проверить, что

ch(x + у) = chchy + shshy

аналогично традиционному выражению

cos(x + у) = coscosy + sinsiny

* * *

ОСНОВНОЕ ТОЖДЕСТВО ГИПЕРБОЛИЧЕСКОЙ ТРИГОНОМЕТРИИ

В евклидовой тригонометрии есть важное соотношение, называемое основным тригонометрическим тождеством, которое утверждает, что sin2x + cos2x 1. Аналогом в гиперболической тригонометрии является следующее тождество:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _96.jpg

ВОПРОС ТЕРМИНОЛОГИИ

В евклидовой терминологии синус и косинус называются круговыми функциями, поскольку они получаются из свойств круга. Рассмотрим окружность радиуса 1 с центром в начале системы координат. Уравнение этой окружности записывается как х2 + у2 = 1. В этом простом уравнении мы можем сделать замену переменной, выразив переменные х и у через параметр t следующим образом: х = cost и у = sint. Здесь х и у удовлетворяют соотношению х2 + у2 = 1. Такое уравнение называется параметрическим уравнением окружности.

Если вместо круга мы возьмем гиперболу, график функции х2у2 = 1, то х ch t и у = sh t удовлетворяют соотношению ху2 = 1. Это уравнение называется «уравнением гиперболы».

Эти графики нам уже знакомы. Гипербола напоминает нам псевдосферу.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _97.jpg

* * *

Что касается тангенсов, то можно показать, что

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _98.jpg

аналогично традиционному выражению

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _99.jpg

* * *

ЕВКЛИДОВА ТРИГОНОМЕТРИЯ

Тригонометрические тождества для суммы и разности выглядят следующим образом:

sin(x + у) = sincosy + cossiny

cos(x + у) = coscosy — sinsiny

sin(x — y) = sincosy — cossiny

cos(x — y= coscosy + sinsiny

* * *

РЕШЕНИЕ ГИПЕРБОЛИЧЕСКОГО ТРЕУГОЛЬНИКА ПО ЕГО УГЛАМ

Пусть в гиперболическом треугольнике даны внутренние углы А = 8°, В = 22° и С = 40°. Надо найти угловой дефект и длины сторон треугольника.

Угловой дефект считается по формуле 180° — (8° + 22° + 40°) = 110°. Для вычисления длин сторон мы воспользуемся гиперболической теоремой косинусов и получим

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _100.jpg

Это позволяет нам вычислить значение а. Для этого воспользуемся калькулятором и посчитаем функцию, обратную гиперболическому косинусу. Получим значение 2,642857562. Далее

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _101.jpg_0

что дает нам длину b = 3,628644458. И наконец

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _102.jpg

К счастью, современные калькуляторы имеют эти функции, и расчеты можно делать без утомительных промежуточных вычислений.

* * *

Аналогично можно проверить другие соотношения с помощью определений гиперболических синуса и косинуса.

По таблице традиционных тригонометрических тождеств можно составить аналогичные соотношения гиперболической геометрии. Просто надо от функций sinх и cosх перейти к гиперболическим функциям shх и chх соответственно, внося необходимые поправки, поскольку, как мы видели, разница состоит не только в обозначениях. Необходимо, например, изменить знак каждого члена, содержащего произведение двух гиперболических синусов.

Это простое правило позволяет получить соотношения для гиперболической тригонометрии из их евклидовых аналогов:

sh(x + у) = shchy + chshy

sh(x — у) = shchy — chshy

ch(x + y) = chchy + shshy

ch(x — y) = chchy — shshy

Классическая и гиперболическая тригонометрии

Как мы видели, гиперболическая тригонометрия похожа на традиционную, изучаемую в школе: обе имеют аналогичные соотношения. Приведенные ниже выражения содержат функции из обеих тригонометрий.

Рассмотрим треугольник с углами А, В и С и сторонами а, b и с, как показано на рисунке:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _103.jpg

Для него справедливы следующие соотношения:

1) гиперболическая теорема косинусов для углов:

cosА = —cosВ·cosС + sinВ·sinС·chа;

2) гиперболическая теорема косинусов для сторон:

chа = chb·chсshb·shс·cosА;

3) cosА = chа·sinВ;

4) β/2 = α.

Приведенные выше выражения также справедливы, если мы заменим а, Ь, с и А, В, С на Ь, с, а и В, С, А соответственно в результате так называемой круговой перестановки. Таким образом мы можем составить полную таблицу соотношений между традиционной и гиперболической тригонометриями.

Глава 6

Эллиптическая геометрия

Имя немецкого математика Бернхарда Римана вписано большими буквами в историю математики. Эллиптическая геометрия — это удивительное детище его математического гения. Именно он представил прямые линии на таких поверхностях, как шар или мяч для регби, в виде окружностей.

Третья геометрия

Поверхность эллипсоида наиболее часто используется для визуализации и интерпретации эллиптической геометрии, отсюда и термин «эллиптическая геометрия».

Чтобы наиболее ясно продемонстрировать свойства этой геометрии, мы рассмотрим поверхность сферы, которая представляет собой самый простой, частный случай эллипсоида.

С помощью эллипсоида можно представить эту геометрию в очень интересной форме. Рассмотрим сначала более подробно поверхность эллипсоида.

* * *

ЭЛЛИПС

Эллипсом называется такая кривая, сумма расстояний от любой точки которой до двух фиксированных точек (так называемых фокусов) является постоянной

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _104.jpg

Круг является частным случаем эллипса, когда оба фокуса находятся в одной точке.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _105.jpg

* * *

Эллипсоид получается путем вращения эллипса вокруг одной из его осей симметрии. Эллипсоид напоминает апельсин или лимон, а также планету Земля. Земля на самом деле является не сферой, а эллипсоидом, так как она приплюснута на полюсах. Однако для простоты мы будем считать земной шар идеальной сферой.