Мир математики. т 40. Математическая планета. Путешествие вокруг света - Альберти Микель. Страница 22

Но есть культура, в которой искусство рисования геометрических узоров достигло поистине невероятных высот. Арабские узоры и мозаики встречаются на территории от Марокко до Индии и от Испании до Танзании. Их удивительную симметрию можно увидеть не только в мечетях, дворцах и медресе, но и в гостиницах, аэропортах и на самолетах. Исламские узоры берут начало в арабских узорах, созданных до 1000 года нашей эры.

Мир математики. т 40. Математическая планета. Путешествие вокруг света - _147.jpg

Арабский узор (ок. 1200 года)

Этот арабский узор, которым можно целиком замостить плоскость, образован повторением шестиугольника с осевой симметрией относительно поворота на 60°. Основу узора составляет сетка из равносторонних треугольников, сочетание которых и образует основную фигуру, или лейтмотив.

Мир математики. т 40. Математическая планета. Путешествие вокруг света - _148.jpg

Некоторые узоры отличаются тем, что построены на треугольных, а не прямоугольных сетках, поэтому обладают осевой симметрией относительно поворота на 60° и 120°. Прямой угол в узорах также присутствует, но играет второстепенную роль. В исламской культуре геометрия узоров усложнилась с появлением двойных линий — лент, сплетающихся в виде узлов. Эти узоры двумерны, но мастера, умело играя с особенностями нашего восприятия, создают эффект трехмерности. Равносторонние треугольники сетки образуют бесконечное множество составных фигур, среди которых выделяются шести- и двенадцатиконечная звезда, как в архитектурном ансамбле Альгамбра в Гранаде.

Мир математики. т 40. Математическая планета. Путешествие вокруг света - _149.jpg

Узор в Альгамбре времен династии Насридов (Гранада, Испания, IX век).

* * *

СИММЕТРИЯ И НЕВОЗМОЖНЫЕ МИРЫ

Мы знаем, что стороны улиц наших городов представляют собой параллельные прямые. Но мы не удивляемся, когда видим, как вдали, на горизонте, эти прямые сходятся в одной точке. Из-за особенностей нашего зрения далекие предметы кажутся нам меньше. Сочетание симметрии и технологий может порождать новые миры — невозможные, но отчасти реалистичные. Достаточно взять любую фотографию, отразить ее половину по вертикали или горизонтали и приложить к оригиналу. На двойном изображении мы увидим две параллельные улицы, симметричные друг другу.

Мир математики. т 40. Математическая планета. Путешествие вокруг света - _150.jpg

Улица в японском городе Канадзава и симметричная ей.

* * *

К сожалению, о том, как были выполнены мозаики Альгамбры, и о том, как строились правильные девятиугольники в то время, известно очень немногое (в XVIII веке Гаусс доказал, что построить правильный девятиугольник при помощи циркуля и линейки невозможно). Остается лишь строить догадки. Впрочем, далее вы увидите, что в некоторых культурах для рисования узоров до сих пор используют те же методы, что и в далеком прошлом.

Индийские орнаменты колам

Каждое утро женщины с юга Индии, особенно из штатов Тамилнад и Керала, проводят у дверей своих домов ритуал: они рисуют на земле рисовой мукой или мелом ряд геометрических фигур, которые затем могут раскрашивать в яркие цвета. Эти фигуры — колам — отличаются большим разнообразием и могут иметь вид как маленьких и простых изображений цветов, так и сложнейших геометрических узоров.

Колам — это не просто искусство. Линии и фигуры в нем обычно строятся на сетке точек, заранее размеченных на земле. Кроме того, колам состоят из меньших фигур, как правило, симметричных и повторяющихся по заданной схеме, которая также определяется формой исходной сетки из точек. На фотографии изображен колам с двумя перпендикулярными осями симметрии, начерченный на основе восьмиугольной сетки из точек.

Мир математики. т 40. Математическая планета. Путешествие вокруг света - _151.jpg

Женщины рисуют колам в городе Ченнаи, штат Тамилнад (Индия).

Как правило, узоры колам рисуют женщины, вместе с другими работами по дому. Но иногда к ним присоединяются и мужчины — просто для эстетического удовольствия.

Только в одном случае колам должен рисовать мужчина — во время особого ритуала, посвященного богине-матери Бхагавати в штате Керала. Этот ритуал называется Бхагавати севаи, и проводить его может только жрец-мужчина, который и должен нарисовать особый колам — падман (лотос).

Существует два основных вида узоров колам. К первому относятся узоры, подобные изображенному на предыдущей странице. Они состоят из двумерных фигур, заполняющих сетку из точек. Узоры второго типа состоят из одной или нескольких непрерывных линий, которые проходят через все точки сетки и образуют одну или несколько фигур.

Все колам начинаются с построения на земле сетки из точек, расположение которых зависит от свободного места. Колам могут заранее изображаться на бумаге, особенно если речь идет об очень сложных узорах или фигурах больших размеров. Проводить линии, соединяющие точки, нужно без ошибок — исправления не допускаются. Узоры колам не имеют особых названий и обозначаются по принципу подобия — «звезда», «лотос», «кокосовая пальма», «повозка» и так далее. Линии, соединяющие точки, имеют форму восьмерок, или знака бесконечности.

Мир математики. т 40. Математическая планета. Путешествие вокруг света - _152.jpg

Колам, составленный из элементов меньшего размера, изображенных одной линией.

Сходство со знаком бесконечности не случайно — в этом регионе непрерывные линии подобной формы обозначают бесконечный цикл жизни: рождение, расцвет, увядание.

Тщательно изучив боковые кривые на изображенном выше коламе, мы увидим, в каких случаях их можно изобразить одной линией. Четыре боковые фигуры представляют собой прямоугольники и изображены на сетках точек размерами 2 x 7. Все точки соединены одной линией. Аналогично можно соединить точки в сетках размерами 2 х 3 и 2 х 5.

Мир математики. т 40. Математическая планета. Путешествие вокруг света - _153.jpg

Но провести такую линию на сетке 2 х 4 не удастся. В этом случае потребуются две линии, симметричные по вертикали и горизонтали.

Мир математики. т 40. Математическая планета. Путешествие вокруг света - _154.jpg

Можно ли соединить все точки сетки одной линией, зависит от того, сколько столбцов в сетке — четное это или нечетное число. Пронумеруем столбцы слева направо и увидим, что кривая на сетках размером 2 х З, 2 х 5 и 2 х 7 проходит через столбцы под номерами: {1, 2, 3}, {1, 2, 4, 3} и {1, 2, 4, 6, 7}. Для четного числа столбцов подобное невозможно.

Чтобы построить непрерывную линию, проходящую через все точки сетки двух строк А и В и N столбцов (где нечетное, то есть имеет вид N = 2·k + 1), нужно следовать алгоритму:

N = 2·k + 1:

к четное: {А(1), В(2), А(4), В(6), …, А(2·k), В(N)};

к нечетное: {А(1), В(2), А(4), В(6), …, А(2·k), A(N)}.

Некоторые колам образованы одной кривой, подобно бесконечному узлу, но большинство узоров состоят из нескольких линий.

Мир математики. т 40. Математическая планета. Путешествие вокруг света - _155.jpg

Колам из трех линий.