Квадратура круга - Перельман Яков Исидорович. Страница 3

3. У нас встарину употреблялся сходный с древнеегипетским (см. предыдущую задачу) прием вычисления площади круга, рекомендуемый старинными русскими руководствами по землемерному делу площадь круга приравнивалась площади квадрата со сторонами равными

Квадратура круга - _29_str20_1.png
диаметра. Какой способ точнее — этот или древнеегипетский?

4. Валлис нашел (1656 г.) для вычисления π следующий ряд

Квадратура круга - _30_str20_2.png

и т. д.

Лейбниц вывел (1674) такое равенство:

Квадратура круга - _31_str20_3.png

Почему этими равенствами нельзя воспользоваться для точной квадратуры круга?

5. Индусский математик Брамагупта (VII век) предложил для π следующее приближенное выражение:

Квадратура круга - _32_str20_4.png

Как помощью этого выражения приближенно решить задачу о квадратуре круга?

6. Проверьте следующее приближенное равенство:

Квадратура круга - _33_str20_5.png

Как воспользоваться этим соотношением для приближенной квадратуры круга?

7. Проверьте приближенное равенство

Квадратура круга - _34_str21_1.png

Как воспользоваться им для приближенной квадратуры круга?

8. Проверьте следующее соотношение: периметр прямоугольного треугольника с катетами в

Квадратура круга - _35_str21_2.png
и
Квадратура круга - _36_str21_3.png
диаметра круга, приближенно равен длине окружности этого круга.

Как помощью этого соотношения приближенно решить задачу о квадратуре круга?

9. Голландский инженер Петр Меций нашел (в 1585 г.) для π легко запоминаемое выражение

Квадратура круга - _37_str21_4.png
. Представив его в виде десятичной дроби, установите, сколько в ней верных цифр.

10. Придумайте самостоятельно какое-нибудь правило, практически удобное для быстрого приближенного вычисления площади круга.

Квадратура круга - _38_str21_5.png

Ответы и указания

Квадратура круга - _39_otvety.png_0

1. Если радиус круга R, то площадь его πR2, а длина окружности 2πR, Квадрат, площадь которого старинное правило принимает равной площади круга, имеет сторону длиною

Квадратура круга - _40_str22_1.png
. Площадь такого квадрата равна

Квадратура круга - _41_str22_2.png

Отношение

Квадратура круга - _42_str22_3.png

показывает, что старинное правило дает преуменьшение почти на 22 %.

2. Из отношения

Квадратура круга - _43_str22_4.png

легко установить, что изложенное в задаче правило дает преувеличение примерно на 0,6 %.

3. Правило дает преуменьшение примерно на 2½%.

4. Оба выражения не решают задачи о квадратуре круга, потому что они не могут быть найдены помощью конечного числа математических операций.

5. Построив (рис. 6) прямоугольный треугольник с катетами в 1 и 3 единицы длины, получаем гипотенузу длиною в

Квадратура круга - _44_str23_1.png
, т. е.
Квадратура круга - _45_str23_2.png
тех же единиц. Этот отрезок приближенно выражает длину окружности, диаметр которой равен взятой единице длины. Зная это, можно построить прямоугольник, приближенно равновеликий кругу; таким прямоугольником будет, например, прямоугольник со сторонами в 1 и
Квадратура круга - _46_str23_3.png
единиц длины.

Квадратура круга - _47_str23_4_ris6.png

Построенный прямоугольник легко превратить в равновеликий квадрат. (См. рис. 3 и относящийся к нему текст).

6. Сумма

Квадратура круга - _48_str23_5.png
. Зная, что при радиусе, равном единице длины,
Квадратура круга - _49_str23_6.png
есть сторона вписанного квадрата (рис. 4), a
Квадратура круга - _50_str23_7.png
— сторона вписанного равностороннего треугольника (рис. 5), легко построить отрезок, приближенно равный длине полуокружности. Дальнейший ход построения читатель найдет сам, руководствуясь указаниями, данными выше.

7. Сумма

Квадратура круга - _51_str24_1.png
. Для построения отрезка в
Квадратура круга - _52_str24_2.png
единиц длины, надо уметь построить отрезок равный
Квадратура круга - _53_str24_3.png
единиц длины. Построение может быть выполнено, как нахождение средне-пропорционального между отрезками в 1 и 1,8 ед. длины (рис. 7). Далее — см. решения предыдущих задач.

Квадратура круга - _54_str24_4_ris7.png

8. Так как выражение

Квадратура круга - _55_str24_5.png

равно

Квадратура круга - _52_str24_2.png
, то задача является видоизменением предыдущей.

9. Семь верных цифр.

10. Подобных правил можно предложить много. Вот одно из возможных: площадь круга приближенно равна ¾ площади описанного квадрата плюс половина десятой доли этой величины. Легко видеть, что здесь π принимается равным 3,15 — приближение достаточное для многих практических целей.

Что читать

Квадратура круга - _57_chtochitat.png

Исторические сведения, относящиеся к задаче о квадратуре круга, изложены в книгах:

Цейтен, Г. — История математики в древности и в средние века. ГТТИ. 1932. 230 стр.

Кэджори, Ф. — История элементарной математики. «Mathesis». 1917. 478 стр.

Чвалина, А. — Архимед. ГТТИ. 1934. 40 стр.

Полезные сведения дают брошюры:

Бончковский, Р. — Площади и фигуры, Акад. Наук СССР. 1937. 136 стр.

Лебедев, В. — Очерки по истории точных наук. Вып. IV. Знаменитые геометрические задачи древности. 1920. 71 стр.

Самым полным сочинением на эту тему является книга:

О квадратуре круга. ОНТИ. 1936. 236 стр. Классические сочинения Архимеда, Гюйгенса, Ламберта и Лежандра, которым предпослан очерк по истории вопроса Ф. Рудио.

Квадратура круга - _58_cover1.png

Информация об издании

Ответственный редактор В. А. КАМСКИЙ.

Набор и матрицы изготовлены в Типографии № 1 им. Володарского, управление издательств и полиграфии исполкома Ленгорсовета, Л-град, Фонтанка, 57. М 49584. Подп. к печати 16/IV 1941 г. Заказ № 4021