Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - Шкруднев Фёдор. Страница 5
Кеплер называл золотую пропорцию продолжающей саму себя: «Устроена она так, писал он, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».
Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).
На прямой произвольной длины откладываем отрезок m, рядом – отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов.
Рис. 14. Построение шкалы отрезков золотой пропорции
В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX века. В 1855 году немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».
Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1.625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1.6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1.6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела: длина плеча, предплечья и кисти, кисти и пальцев и т. д.
Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 году в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю. Ф. В. В этом издании не упомянуто ни одно произведение живописи.
В конце XIX – начале XX века появилось немало чисто формалистических теорий о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т. д.
Золотое сечение и симметрия
Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г. В. Вульф (1863–1925) считал золотое сечение одним из проявлений симметрии.
Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии. Согласно современным представлениям, золотое деление – это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия. Статическая симметрия характеризует покой, равновесие, а динамическая – движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она – свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.
Ряд Фибоначчи
С историей золотого сечения косвенным образом связано имя итальянского математика, монаха Леонардо из Пизы, более известного под именем Фибоначчи. Он много путешествовал по Востоку, познакомил Европу с арабскими цифрами. В 1202 году вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи.
Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т. д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0.617, а 34: 55 = 0.618. Это отношение обозначается символом Ф. Только это отношение – 0.618: 0.382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.
Как показано на рисунке 16, длина каждого сустава пальца соотносится с длиной следующего сустава по пропорции Ф. Такое же соотношение проявляется во всех пальцах рук и ног. Эта связь как-то необычна, потому что один палец длиннее другого без всякой видимой закономерности, но это все не случайно, как не случайно все в теле человека. Расстояния на пальцах, отмеченные от А до В до С до D до Е, все соотносятся друг с другом по пропорции Ф, равно как и фаланги пальцев от F до G до H.
Рис. 15. Леонардо Пизанский (Фибоначчи), итальянский математик
Рис. 16. Пропорция Ф в частях тела человека
Взгляните на этот скелет лягушки (рис. 17) и посмотрите, как каждая косточка соответствует модели пропорции Ф точно так, как и в теле человека.
Рис. 17. Пропорция Ф в скелете лягушки
Обобщенное золотое сечение
Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи – ассоциация, которая с 1963 года выпускает специальный журнал.
Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.
Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8 на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой: 2 = 1 + 1; 4 = 2 + 2… во втором – это сумма двух предыдущих чисел: 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2…
Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?