Энциклопедия «Биология» (с иллюстрациями) - Горкин Александр Павлович. Страница 48

ГЕ́ННАЯ ИНЖЕНЕ́РИЯ(генетическая инженерия), совокупность методов молекулярной генетики, направленных на искусственное создание новых, не встречающихся в природе сочетаний генов. Те или иные чужеродные для данного организма гены вводят в его клетки и встраивают в его геном с различными целями: для изучения строения и функций генетического аппарата, для эффективной наработки продукта данного гена (напр., гормона или антибиотика), для придания организму-хозяину каких-либо желаемых свойств (напр., для сельскохозяйственных растений и животных – большей продуктивности или большей устойчивости к инфекциям или паразитам), для замещения (компенсации) генов, дефекты которых вызывают наследственные заболевания, и др.

Генно-инженерная технология использует всё разнообразие сложных и тонких методов современной генетики, позволяющих работать с ничтожными количествами генетического материала. Основные этапы и операции генной инженерии включают: выделение из клеток ДНК, содержащей нужный ген; разрезание ДНК на мелкие фрагменты с помощью специальных ферментов; соединение фрагментов ДНК с т.н. векторами, обеспечивающими проникновение в клетку; клонирование (размножение) нужного гена; создание рекомбинантной (гибридной) ДНК из участков ДНК (генов) разного происхождения; введение (микроинъекция) генетического материала в культивируемые клетки организма-хозяина или в его яйцеклетку.

После того как в нач. 70-х гг. 20 в. был разработан метод получения рекомбинантных ДНК, чужеродные гены стали вводить в клетки бактерий, растений и животных. Такие организмы получили название трансгенных. Очень быстро генная инженерия нашла практическое применение как основа биотехнологии. Уже в 80-е гг. 20 в. с помощью бактериальных клеток, в которые вводили гены человека, ответственные за синтез гормонов инсулина и соматотропина и антивирусного белка интерферона, было налажено производство этих важных для медицины препаратов. В мощную индустрию превратилось получение и разведение используемых в сельском хозяйстве трансгенных растений и трансгенных животных.

Большинство учёных связывает с развитием генной инженерии решение таких сложных проблем, как обеспечение человечества продовольствием и энергией, успешную борьбу с болезнями и с загрязнением окружающей среды. Вместе с тем высказываются опасения, что ничем не ограниченные генетические эксперименты и широкое использование в пищу трансгенных организмов может привести к непредсказуемым последствиям и спорно с точки зрения традиционной морали и этики.

ГЕНО́М, характерный для каждого вида организмов гаплоидный (одинарный) набор хромосом; совокупность всех генов (всей ДНК), заключённых в гаплоидном наборе. Термин «геном» относят и к генетическому материалу бактерий (прокариот) и вирусов, представленному одной молекулой ДНК или РНК. В геном эукариот не включают ДНК митохондрий и других органоидов цитоплазмы.

Размер генома, определяемый количеством ДНК (измеряется числом пар, образующих ДНК нуклеотидов, или в единицах массы), изменялся в ходе эволюции и различен у разных групп организмов. Геном бактерий состоит в среднем из 106 пар нуклеотидов, грибов – из 107 пар, геном большинства животных и многих растений – из 109 нуклеотидных пар. У значительной части семенных растений, а также у саламандр и некоторых древних рыб он достигает размера в 1010 пар нуклеотидов. Геном человека включает примерно 3 млрд. (3·109) пар нуклеотидов. Хотя у более продвинутых групп геном обычно больше, чем у их эволюционных предшественников, прямого и однозначного соответствия между сложностью организма и размером генома нет.

Клетки диплоидных организмов содержат два генома – один от «отца», другой от «матери». Но в природе, чаще у растений, встречаются виды, у которых хромосомный набор представлен несколькими геномами. Это явление – полиплоидию – можно вызвать искусственно. Путём гибридизации разных видов получают организмы – аллополиплоиды, в клетках которых одновременно присутствуют геномы разных видов.

В 2001 г. в основном завершился начатый в кон. 1980-х гг. международный научный проект «Геном человека», ставивший своей целью полную расшифровку нуклеотидной последовательности всех генов человека. «Прочитан» весь «текст» нуклеотидной последовательности ДНК человека, включающий от 30 до 40 тыс. генов. При этом оказалось, что работающие гены занимают всего лишь менее 5% генома; функции остальной части ДНК не ясны. Полученные данные позволят сделать принципиальный вклад в решение самых сложных проблем биологии и здоровья человека.

ГЕНОТИ́П, все гены организма, в совокупности определяющие все признаки организма – его фенотип. Если геном есть генетическая характеристика вида, то генотип является генетической характеристикой (конституцией) конкретного организма. При изучении наследования определённых признаков генотипом называют не все гены, а только те, которые эти признаки определяют.

Генотип представляет собой не механическую сумму автономных, независимо действующих генов, а сложную и целостную систему – генотипическую среду, в которой работа и реализация каждого гена зависят от влияния других генов. Так, при взаимодействии аллельных генов, помимо простых случаев доминантности и рецессивности, возможны неполное доминирование, кодоминирование (проявление сразу двух аллельных генов) и сверхдоминирование (более сильное проявление признака у гетерозигот по сравнению с гомозиготами).

При взаимодействии неаллельных генов возможны комплементарность (взаимодополняемость генов) и эпистаз (подавление одним геном другого). Эти формы взаимодействия относятся к качественным признакам. Степень развития многих т.н. количественных признаков (к ним относятся, напр., высота растений, масса и рост животных, жирность молока, яйценоскость кур и другие хозяйственно ценные свойства) зависит от совместного действия ряда неаллельных доминантных генов. Это явление называется полимерией, а гены, действующие в одном направлении, – полимерными генами. Обратное явление, когда один ген влияет на развитие нескольких признаков, называется плейотропией. В основе всех этих проявлений генотипической среды лежит то обстоятельство, что развитие любого признака происходит в результате целого ряда последовательных биохимических реакций, каждая из которых контролируется отдельным геном.

Особи с одинаковым генотипом, развивающиеся в разных условиях внешней среды, могут иметь различные фенотипы. В связи с этим в генетике было разработано представление о норме реакции, т.е. о тех границах, в пределах которых под влиянием разных условий среды может изменяться фенотип при данном генотипе. Таким образом, размах фенотипической изменчивости тоже определяется генотипом, или, другими словами, фенотип есть результат взаимодействия генотипа и внешней среды. Получение клеток и особей с одинаковым генотипом путём вегетативного размножения и клонирования важно как для решения научных проблем, так и практических задач сельского хозяйства, медицины, биотехнологии.

ГЕНОФО́НД, совокупность всех генов или генотипов в популяции или группе популяций какого-либо вида организмов. Генофонд достаточно большой популяции, в которой происходит свободное скрещивание организмов, обладает определённой целостностью и устойчивостью: частоты встречаемости тех или иных генов (аллелей) и генотипов поддерживаются в популяции в относительном равновесии. Вместе с тем, если популяция подвергается действию т.н. элементарных факторов эволюции (мутаций, изоляции,естественного отбора и др.), происходит нарушение этого равновесия. Со временем устойчивое изменение частот генов (микроэволюция) может дать толчок видообразованию.

Термин «генофонд» употребляют не только по отношению к природным популяциям. Напр., говорят о генофонде какой-либо породы домашних животных, сорта культурного растения или о генофонде всех пород и сортов. Необходимость сохранения генофонда всех живых существ Земли вытекает из признания генетической уникальности, неповторимости биологических видов, каждый из которых есть результат длительной эволюции.