Большая Советская Энциклопедия (ЯД) - Большая Советская Энциклопедия "БСЭ". Страница 7

  Однако главная проблема в развитии Я. э. — разработка экономичных, надёжных способов захоронения больших количеств высокоактивных отходов. В этом направлении во многих странах мира ведутся научно-исследовательские и опытно-промышленные работы, в частности по разработке эффективных методов остекловывания радиоактивных отходов. В 70-х гг. в Я. э. переработка выгоревших ТВЭЛов ещё не получила большого развития, но с расширением строительства АЭС и особенно быстрых реакторов, когда понадобится большое количество вторичного ядерного топлива, массовое захоронение высокоактивных отходов может приобрести первостепенное значение.

  Международное агентство по атомной энергии при ООН (МАГАТЭ) выдало рекомендацию на сброс радиоактивных отходов низкой и средней активности в северо-восточной части Атлантического океана. В 1976 в океан было сброшено контейнерами почти 40000 т отходов, содержащих около 240000 кюри (b — g-активности. Однако такой метод захоронения радиоактивных отходов в глубинах морей и океанов вызывает возражения среди учёных ряда стран.

  Одна из важнейших проблем Я. э. — проблема выработки энергии с помощью управляемого термоядерного синтеза. При создании термоядерного энергетического реактора можно надеяться на решение всех проблем Я. э. без необходимости собирать высокоактивные отходы и искать пути и способы надёжного их захоронения. К 1977 уже на нескольких термоядерных установках получены нейтроны термоядерного происхождения. Наиболее совершенной установкой в настоящее время является система Токамак , разработанная в 50-х гг. в институте атомной энергии им. И. В. Курчатова (Москва). В 1975 там же была пущена крупнейшая в мире термоядерная установка Токамак-10. Система Токамак получила признание в ряде ведущих стран мира. Так, в США в Принстонском университете создана установка «Принстонский большой Токамак» (PLT); во Франции, в ядерном центре Фонтене-о-Роз — установка «Токамак Фонтене Роз» (TFR). Осуществление регулируемого термоядерного синтеза, получение практически неисчерпаемого источника энергии на термоядерных электростанциях — крупнейшая проблема ядерной физики, задача огромного масштаба, которую ныне решают учёные различных специальностей во многих странах мира.

  Лит.: Александров А. П., Атомная энергетика и научно-технический прогресс, в сборнике: Атомной энергетике XX лет, М., 1974; Маргулова Т. Х., Атомные электрические станции, 2 изд., М., 1974; Петросьянц А. М., Современные проблемы атомной науки и техники в СССР, 3 изд., М., 1976.

  А. М. Петросьянц.

Ядерная энергия

Я'дерная эне'ргия , атомная энергия, внутренняя энергия атомного ядра, выделяющаяся при ядерных реакциях . Энергия, которую необходимо затратить для расщепления ядра на составляющие его нуклоны, называется энергией связи ядра xсв . Следовательно, энергия связи — максимальная Я. э. Энергия связи, рассчитанная на один нуклон, называется удельной энергией ев я з и xсв /А (А — массовое число ). Энергия связи ядра складывается из энергии притяжения нуклонов друг к другу под действием ядерных сил и энергии взаимного отталкивания протонов под действием электростатических сил. Каждый нуклон сильно взаимодействует лишь с небольшим числом соседних. Поэтому уже начиная с 4 He удельная энергия связи слабо растет с увеличением А. Максимум достигается в области Fe (А = 56), после чего идёт спад (см. рис. ). Такой ход зависимости объясняется тем, что часть нуклонов находится на периферии ядра, и для них притяжение к остальным нуклонам является более слабым. В лёгких ядрах число таких нуклонов относительно велико. В результате уменьшения роли периферийных нуклонов с увеличением А значение xсв растёт. В тяжёлых ядрах xсв с ростом А убывает, т. к. энергия притяжения растет с увеличением А линейно, а энергия электростатического отталкивания протонов растет пропорционально квадрату числа протонов Z2 . Т. о., экзотермическими являются реакции ядерного синтеза (образование лёгких ядер из легчайших), реакции расщепления тяжёлых ядер (деление ядер на более мелкие осколки, см. Ядра атомного деление ) и спонтанный альфа-распад. При т. н. магических значениях Z и N (число нейтронов в ядре) зависимость xсв от А имеет небольшие максимумы, связанные с наличием в ядре замкнутых оболочек (см. Ядро атомное ,Магические ядра ).

  Из-за электростатического отталкивания протонов реакции ядерного синтеза могут развиваться, если кинетическая энергия ядер велика, т. е. при высоких температурах среды (см. Термоядерные реакции ). Реакции ядерного синтеза являются источником звёздной энергии. Реакции так называемого водородного цикла в звёздах протекают с образованием 4 He и выделением энергии ~7 Мэв/нуклон (1,8(108квт (ч/кг ). В земных условиях осуществлены 2 термоядерные реакции: слияние 2 дейтронов, сопровождающееся выделением энергии 1 Мэв/нуклон, и синтез дейтрона и тритона, при котором выделяется 3,5 Мэв/нуклон.

  В реакции деления 235 U под действием нейтронов выделяется около 214 Мэв в 1 акте деления (для изотопов Pu на 4—5% больше). Из них около 12 Мэв уносит в мировое пространство нейтрино . Т. о., реально выделяющаяся Я. э. составляет 0,85 Мэв/нуклон, или 2,2·108квт ·ч/кг. Это в 2·106 раз превосходит энергию, выделяющуюся при сгорании 1 кг нефти. Пока в качестве промышленного источника Я. э. используются только реакции деления ядер.

  Лит. см, при ст. Ядро атомное .

  А. М. Петросьянц

Большая Советская Энциклопедия (ЯД) - i010-001-262251630.jpg

Зависимость удельной энергии связи ядер от числа нуклонов.

Ядерного ущерба возмещение

Я'дерного уще'рба возмеще'ние конвенция, см. Венская конвенция 1963 .

Ядерное горючее

Я'дерное горю'чее , делящееся вещество, нуклиды, которые входят в состав ядерного топлива и обеспечивают цепную реакцию деления ядер.

Ядерное оружие

Я'дерное ору'жие , оружие, в котором средством поражения является ядерный заряд; представляет собой комплекс, включающий ядерный боеприпас , средство доставки его к цели (ракета, торпеда, самолёт, артиллерийский выстрел ), а также различные средства управления, обеспечивающие попадание боеприпаса в цель. Различают собственно ядерное и термоядерное оружие. Действие Я. о. основано на использовании поражающих факторов ядерного взрыва .

  Я. о., как оружие массового поражения, предназначается для разрушения в короткие сроки административных центров, промышленных и военных объектов, уничтожения группировок войск, сил флота, создания зон массовых разрушений, затоплений, пожаров и радиоактивного заражения среды. Я. о. оказывает на людей сильное моральное и психологическое воздействие. Мощность ядерного боеприпаса оценивается тротиловым эквивалентом . Современные ядерные боеприпасы имеют тротиловый эквивалент от нескольких десятков т до нескольких десятков млн. т тротила. В литературе часто мощность Я. о. выражают просто в килотоннах (кт ) и мегатоннах (Мт ), опуская слова «тротиловый эквивалент».

  Я. о. могут применять все виды вооруженных сил. Исходя из предназначения Я. о., мощности зарядов, боевых возможностей средств, используемых для доставки ядерных боеприпасов к цели, его принято делить на стратегическое (для поражения важных стратегических объектов в глубоком тылу; состоит в распоряжении высшего военно-политического руководства государства); оперативно-тактическое (для поражения различных объектов в оперативно-тактической глубине) и тактическое (для поражения войск, боевой техники, тыловых и других объектов, расположенных в тактической зоне).