Большая Советская Энциклопедия (ЭН) - Большая Советская Энциклопедия "БСЭ". Страница 23
Г. Я. Мякишев.
Энергия
Эне'ргия (от греч. enérgeia — действие, деятельность), общая количественная мера движения и взаимодействия всех видов материи. Э. в природе не возникает из ничего и не исчезает; она только может переходить из одной формы в другую (см. Энергии сохранения закон ). Понятие Э. связывает воедино все явления природы.
В соответствии с различными формами движения материи рассматривают различные формы Э.: механическую, электромагнитную, ядерную и др. Это подразделение до известной степени условно. Так, химическая Э. складывается из кинетической энергии движения электронов и электрической энергии взаимодействия электронов друг с другом и с атомными ядрами. Внутренняя Э. равна сумме кинетической Э. хаотического движения молекул относительно центра масс тел и потенциальных Э. взаимодействия молекул друг с другом. Э. системы однозначно зависит от параметров, характеризующих состояние системы. В случае непрерывной среды или поля вводятся понятия плотности Э., т. е. Э. в единице объема, и плотности потока Э., равной произведению плотности Э. на скорость ее перемещения.
В относительности теории показывается, что Э. Е тела неразрывно связана с его массой т соотношением Е = тс2 , где с — скорость света в вакууме. Любое тело обладает Э.; если то — масса покоящегося тела, то его Э. покоя Eo = то с2 , эта энергия может переходить в другие виды Э. при превращениях частиц (распадах, ядерных реакциях и т. д.).
Согласно классической физике, Э. любой системы меняется непрерывно и может принимать любые значения. Согласно квантовой теории, Э. микрочастиц, движение которых происходит в ограниченной области пространства (например, электронов в атомах), принимает дискретный ряд значений. Атомы излучают электромагнитную Э. в виде дискретных порций — световых квантов, или фотонов (см. Квантовая механика ).
Э. измеряется в тех же единицах, что и работа : в системе СГС — в эргах , в Международной системе единиц (СИ) — в джоулях ; в атомной и ядерной физике и в физике элементарных частиц обычно применяется внесистемная единица — электронвольт .
Лит. см. при ст. Энергии сохранения закон .
Г. Я. Мякишев.
«Энергия»
«Эне'ргия», издательство в системе Государственного комитета Совета Министров СССР по делам издательств, полиграфии и книжной торговли. Основано в 1932 как Энергоиздат, затем преобразовано в Госэнергоиздат, с 1963 — «Э.». Находится в Москве, имеет отделение в Ленинграде. Выпускает научно-техническую, производственную, справочную и другую литературу по теплотехнике, гидротехнике и гидроэнергетике, электроэнергетике, электротехнике и др. По каждому тематическому направлению выпускаются серийные издания; издательство выпускает монографии, содержащие основные направления развития энергетики страны (например, «Энергетика СССР в 1971—1975 годах»). Фундаментальными, неоднократно переиздаваемыми изданиями являются многотомные справочники: «Электротехнический справочник», «Справочник по электроустановкам промышленных предприятий», «Теплотехнический справочник». Издательство выпускает журналы (среди них «Электричество», основан в 1880). В 1976 выпущено 347 названий книг и брошюр тиражом около 5,9 млн. экз., объемом свыше 98,2 млн. печатных листов-оттисков.
С. П. Розанов.
Энергия активации
Эне'ргия актива'ции, разность между значениями средней энергии частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергии всех частиц, находящихся в реагирующей системе. Для различных химических реакций Э. а. изменяется в широких пределах — от нескольких до ~ 10 дж./ моль. Для одной и той же химической реакции значение Э. а. зависит от вида функций распределения молекул по энергиям их поступательного движения и внутренним степеням свободы (электронным, колебательным, вращательным). Как статистическую величину Э. а. следует отличать от пороговой энергии, или энергетического барьера, — минимальной энергии, которой должна обладать одна пара сталкивающихся частиц для протекания данной элементарной реакции.
В рамках представлений теории абсолютных скоростей реакций Э. а. — разность между значениями средней энергии активированных комплексов и средней энергии исходных молекул.
Представления об Э. а. возникли в 70—80-х гг. 19 в. в результате работ Я. Вант-Гоффа и С. Аррениуса , посвященных изучению влияния температуры на скорость химической реакции. Константа скорости реакции k связана с Э. а. (Е ) уравнение м Аррениуса:
k = ko e-E/RT
где R — газовая постоянная , Т — абсолютная температура в К, ko — постоянная, называемая предэкспоненциальным множителем константы скорости. Это уравнение, основанное на молекулярно-кинетической теории, позже было получено в статистической физике с учетом ряда упрощающих предположений, одно из которых — независимость Э. а. от температуры. Для практики и для теоретических расчетов в сравнительно узких температурных интервалах это предположение справедливо.
Э. а. можно найти по экспериментальным данным несколькими способами. Согласно одному из них, исследуют кинетику реакции при нескольких температурах (о методах см. в ст. Скорость химической реакции ) и строят график в координатах In k — 1/T ; тангенс угла наклона прямой на этом графике, в соответствии с уравнением Аррениуса, равен Е. Для одностадийных обратимых реакций (см. Обратимые и необратимые реакции ) Э. а. реакции в одном из направлений (прямом или обратном) можно вычислить, если известна Э. а. реакции в другом и температурная зависимость константы равновесия (из термодинамических данных). Для более точных расчетов следует учитывать зависимость Э. а. от температуры.
Э. а. сложных реакций представляет собой комбинацию Э. а. элементарных стадий. Иногда, помимо истинной Э. а., определяемой по уравнению Аррениуса, используют понятие «кажущейся» Э. а. Например, если константы скоростей гетерогенно-каталитических реакций определяют по изменению объемных концентраций исходных веществ и продуктов, то кажущаяся Э. а. отличается от истинной на величину тепловых эффектов, сопровождающих процессы адсорбции и десорбции реагирующих веществ на поверхности катализатора. В неравновесных системах, например плазмохимических (см. Плазмохимия ), определение Э. а. является очень сложной задачей. В некоторых случаях, однако, возможно формальное применение уравнения Аррениуса.
Э. а. — важнейшее понятие кинетики химической ; ее значения включают в специальные справочники и используют в химической технологии для расчета скоростей реакций в различных условиях.
Лит. см. при ст. Кинетика химическая .
Ю. А. Колбановский.
Энергия кристаллической решётки
Эне'ргия кристалли'ческой решётки, равна работе, которую необходимо затратить, чтобы разделить и отделить друг от друга на бесконечное расстояние частицы, образующие кристаллическую решетку . Э. к. р. является частным случаем энергии связи. Она зависит от типа частиц (молекул, атомов, ионов), из которых построена решетка кристалла, и характера взаимодействия между ними (см. Твердое тело ). Э. к. р. имеет величину от 10 кдж/моль до 4000 кдж/моль и может быть косвенно определена по данным калориметрических измерений (см. Термохимия ) и другими методами. Величина Э. к. р. зависит также от начальной энергии частиц, образующих кристаллическую решетку; об этом факте иногда говорят как о зависимости Э. к. р. от температуры. Обычно Э. к. р. рассматривают для случаев, когда вещество находится в стандартном состоянии или при 0 К. Она в значительной степени определяет прочность связи между частицами в кристалле, а также такие его физические свойства, как прочность, твердость, температура плавления.