Большая Советская Энциклопедия (ЭЛ) - Большая Советская Энциклопедия "БСЭ". Страница 32
направление фазовой скорости совпадает с направлением волнового вектора k. Эта формула была подтверждена в Физо опыте . Из (5), в частности, видно, что скорость света в движущейся среде не равна сумме скоростей света в неподвижной среде и самой среды.
Поляризация волны, т. е. направления векторов E и H , зависит от скорости среды: вектор E перпендикулярен не k, как в покоящейся среде, а вектору
, (6)представляющему собой линейную комбинацию скорости среды и волнового вектора; вектор H не перпендикулярен k и E .
До сих пор предполагалось, что среда перемещается как целое равномерно и прямолинейно. Если скорость среды зависит от координат и времени, например если среда вращается, то методы специальной теории относительности становятся недостаточными для определения электромагнитного поля в этом случае. Вид уравнений поля может быть получен с помощью общей теории относительности . (При малых угловых скоростях вращения применима специальная теория относительности.)
Отражение и преломление света на движущихся границах раздела. Если электромагнитная волна падает на движущуюся границу раздела двух сред, то, как и в случае покоящейся границы, волна частично отражается, а частично проходит через границу. Однако движение границы приводит к ряду новых физических эффектов. Так, оказывается, что угол падения не равен углу отражения, а частоты всех трёх волн — падающей, отражённой и преломленной — различны. Имеются и другие отличия: например, при некоторых скоростях границы может отсутствовать отражённая волна, но зато имеются две преломленные с разными частотами.
Рассмотрим простейший пример — отражение света от движущегося в пустоте зеркала (Эйнштейн, 1905). В этом случае прошедшая волна отсутствует, имеются лишь падающая и отражённая волны (рис. 1 ). Если скорость u зеркала направлена по нормали к его плоскости, а волна падает на зеркало под углом a1 к нормали, то угол отражения a2 след. образом выражается через угол падения:
, (7)где b = u/c (предполагается, что зеркало движется навстречу падающей волне). При b = 0 (зеркало покоится) получим cos a1 = cos a2 , т. е. равенство углов падения и отражения. Напротив, если скорость зеркала стремится к скорости света, то из (7) следует, что при любом угле падения угол отражения равен нулю, т. е. даже при скользящем падении отраженная волна уходит от зеркала по нормали. Частота отраженной волны связана с частотой падающей волны соотношением:
. (8)Если волна падает на движущееся зеркало по нормали, то из (8) получается
. (9)Если скорость зеркала близка к скорости света, частота отражённой волны во много раз больше частоты падающей.
Движущееся зеркало — один из примеров движущейся границы раздела. В общем случае граница раздела не является идеально отражающей, поэтому кроме падающей и отражённой имеется преломленная волна. Помимо этого, и граница раздела, и среды по обе стороны от неё могут двигаться с различными скоростями. Если скорости сред по обе стороны от границы параллельны плоскости раздела, отражение волны от такой границы сопровождается поворотом плоскости поляризации, причём угол поворота пропорционален относит, скорости граничащих сред.
Для определения отражённой и преломленной волн необходимо знать условия, которым удовлетворяют поля на границе раздела. В системе отсчёта, в которой граница раздела покоится, граничные условия оказываются такими же, как в электродинамике неподвижных тел.
По изменению частоты при отражении волны от движущейся границы может быть определена скорость границы. Было также предложено использовать этот эффект для умножения частоты электромагнитных волн; при этом в качестве отражающих тел предлагалось применять пучки ускоренной плазмы . Эксперимент подтвердил такую возможность, однако достигнутая эффективность преобразования частот пока невелика.
Излучение электромагнитных волн в движущейся среде . Источниками излучения в движущейся среде, как и в покоящейся, являются электрические заряды и токи. Однако характер распространения электромагнитных волн от источника, расположенного в движущейся среде, существенно отличается от того, что имеет место в случае покоящейся среды.
Пусть в некоторой малой области в движущейся среде расположен источник и время излучения мало. Если бы среда покоилась, то поле излучения расходилось бы от источника во все стороны с одинаковой скоростью, равной скорости света, т. е. всё поле излучения было бы сосредоточено вблизи от сферической поверхности, расширяющейся со скоростью света. Движение среды приводит к тому, что скорость света в разных направлениях оказывается различной [см. формулу (5)]. Поэтому поверхность, на которой поле излучения отлично от нуля, уже не является сферой. Расчёт показывает, что эта поверхность имеет вид эллипсоида вращения с осью симметрии, направленной по скорости движения среды. Полуоси эллипса линейно растут со временем, а центр эллиптической оболочки перемещается параллельно скорости среды. Т. о., оболочка, на которой сосредоточено излучение, одновременно расширяется и «сносится по течению» в движущейся среде («увлекается» средой). Если скорость перемещения среды сравнительно невелика, то источник излучения находится внутри этой оболочки (рис. 2 ).
Если же скорость движения среды превышает фазовую скорость света, то оболочку «сдувает» настолько сильно, что она вся оказывается «ниже по течению», и источник излучения находится вне этой оболочки (рис. 3 ).
Прохождение заряженной частицы через движущуюся среду . При рассмотрении излучения в движущейся среде ранее предполагалось, что источник излучения покоится. Если источник движется, то его поле излучения, как и в покоящейся среде, определяется интерференцией волн, испущенных источником в каждой точке своего пути. Отличие от случая покоящейся изотропной среды заключается в том, что из-за эффекта увлечения в движущейся среде скорость волн в разных направлениях различна (см. рис. 2 и 3 ).
Особенность излучения движущегося источника в движущейся среде можно понять на примере Черенкова — Вавилова излучения . Пусть в среде, движущейся со скоростью u, перемещается с постоянной скоростью и точечная заряженная частица. Для простоты будем считать, что и и u направлены по одной прямой. В случае покоящейся среды (u = 0) частица может стать источником излучения, если её скорость достаточно велика (превышает фазовую скорость света в среде
). Возникающее излучение, называется излучением Черенкова — Вавилова, уносит энергию от движущейся частицы, которая, т. о., замедляется. В движущейся среде источником излучения Черенкова — Вавилова может быть медленная или даже покоящаяся заряженная частица. Если частица покоится, а скорость движения среды превышает фазовую скорость света, возникает характерное волновое поле, представляющее собой излучение Черенкова — Вавилова в этом случае. При этом на частицу — источник излучения — действует ускоряющая сила в направлении движения среды.Рассмотренный пример показывает, что в движущейся среде характер взаимодействия заряженной частицы со средой меняется. В зависимости от скоростей частицы и среды потери энергии частицы могут иметь различную величину и даже менять знак, что соответствует уже не замедлению, а ускорению частицы средой.