Большая Советская Энциклопедия (ХИ) - Большая Советская Энциклопедия "БСЭ". Страница 41
Однако только на основе квантовой механики удалось объяснить природу химической связи, точно рассчитать энергию связи для простейшей молекулы — молекулы водорода (нем. учёные В. Гейтлер и Ф. Лондон, 1927) — и многие физические параметры др. двухатомных и нескольких многоатомных молекул (H2 O, HF, LiH, NH3 и др.), в том числе межатомные расстояния, энергии образования из атомов, частоты колебания в спектрах, электрические и магнитные свойства, насыщаемость и направленность связей.
Новейший этап развития Х. характеризуется быстрой разработкой пространственных представлений о строении вещества, стереохимических концепций. Ещё в 1874—75 Ж. А. Ле Бель и Вант-Гофф высказали предположение, что 4 атома или радикала, связанные с атомом углерода, расположены не в одной плоскости, а в пространстве, по вершинам тетраэдра, в центре которого находится атом углерода. В связи с этим было расширено представление об изомерии , установлено несколько её видов и были заложены основы стереохимии . Для многих молекул были определены их стабильные пространственные конфигурации; в дальнейшем исследователи установили лабильные конформации молекул, возникающие в результате некоторого затруднения свободного вращения атомных групп вокруг простых связей (см. Конформационный анализ ).
Современная теоретическая Х. основывается на общефизическом учении о строении материи, на достижениях квантовой теории, термодинамики и статистической физики. Применение методов квантовой механики к решению химических задач привело к возникновению квантовой Х. Её задачей стало решение волнового уравнения Шредингера для многоэлектронных систем молекул. Одним из первых результатов была теория валентных связей, ещё широко использовавшая традиционное представление о паре электронов как носительнице химической связи (Гейтлер, Лондон, Дж. Слэтер , Полинг). Затем был разработан метод молекулярных орбиталей (МО), рассматривающий целостную электронную структуру молекулы; каждая молекулярная орбиталь (волновая функция) учитывает вклад в неё всех электронных орбиталей атомов (см. Молекулярных орбиталей метод ). Наиболее распространённый вариант метода МО основанный на приближённом описании молекулярных орбиталей через линейную комбинацию атомных орбиталей (ЛКАО МО). В ряде случаев для простейших молекул на основе использования новейшей вычислительной техники могут быть проведены весьма сложные расчёты молекул без всяких предварительных упрощений задачи. На основе указанного метода рассчитываются энергетические и электронные параметры молекул (распределение электронной плотности, величина энергии, длина и порядок связей, некоторые физические свойства соединений). Метод МО получил ныне распространение в теории органической Х. В неорганической Х. на основе его сочетания с теорией кристаллического поля (Х. Бете ) возникла теория поля лигандов.
Квантовохимическое рассмотрение кинетических соотношений, установленных Аррениусом и Вант-Гоффом, привело к возникновению учения об абсолютных скоростях химических реакций, являющегося основой химической кинетики. Это позволило вычленить очень важную теоретическую проблему современной Х. — вопрос о природе переходного состояния, промежуточного активированного комплекса , внутри которого происходят во многом ещё неясные процессы перестройки структуры молекул.
Детальное изучение кинетики и механизмов реакций, исследование элементарных актов химических взаимодействий — важная задача химической физики. Большое значение приобрели работы в области цепных реакций , основы теории которых были разработаны Н. Н. Семеновым и С. Хиншелвудом . Кинетические исследования сыграли важную роль в развитии технологии переработки нефти, горения топлива, синтеза высокомолекулярных веществ. Показана возможность химической фиксации азота при обычных температуре и давлении, что может существенно изменить будущую технологию.
Ядерные превращения и сопутствующие им физико-химические явления, продукты ядерных реакций, радиоактивные изотопы, элементы и вещества служат объектами изучения ядерной химии и радиохимии . Работы в этом направлении имеют большое значение для получения и извлечения атомного сырья, разделения изотопов, использования расщепляющихся материалов.
Взаимодействие вещества с излучением и частицами высоких энергий различной природы, приводящее к химическим превращениям, изучается радиационной Х. Воздействие радиации инициирует многие процессы, в том числе синтез высокомолекулярных соединений из мономеров. В частности, под действием света происходят фотохимические реакции. Фотохимия исследует как связывание энергии электромагнитного излучения (например, в фотосинтезе, осуществляемом зелёными растениями), так и многочисленные реакции синтеза и распада, изомеризации и перегруппировок, возникающие в ходе указанного взаимодействия. Для промышленного производства перспективно использование мощной энергии лазера .
В электрохимии накоплен большой материал по исследованию электролитов, их электропроводности, электрохимических процессов, создана электрохимическая кинетика, изучаются неравновесные электродные потенциалы, процессы коррозии металлов, разрабатываются новые химические источники тока . Успехи теоретической электрохимии позволили дать более прочную научную основу многим промышленным электрохимическим процессам.
Влияние магнитных полей на химическое поведение молекул рассматривается магнетохимией . Область термохимических исследований расширилась в результате изучения взаимодействия вещества с плазмой , в частности в целях использования в плазмохимической технологии. Становление плазмохимии относится к 60-м гг., когда были выполнены основополагающие работы в СССР, США и ФРГ.
Химические превращения совершаются во всех агрегатных состояниях вещества — в жидком, газообразном и твёрдом. Всё большую актуальность приобретают исследования химических реакций твёрдых тел (топохимические реакции ).
В современной Х. накапливаются данные о химической эволюции вещества во Вселенной, что позволяет составить общую картину эволюции природы. Современная ядерная физика и астрофизика сформировали представление о возникновении химических элементов. На основе изучения Х. метеоритов, вулканических земных пород, лунного грунта постепенно вырисовывается картина химической дифференциации вещества на планетной стадии развития, в частности геохимической эволюции (см. Геохимия , Космохимия ).
Обнаружение сложных органических молекул в межзвёздном пространстве, в метеоритах и древнейших горных породах Земли, а также модельные опыты по синтезу сложных органических веществ из простейших соединений (CH4 , CO2 , NH3 , H2 O) в условиях искрового разряда, радиоактивного и ультрафиолетового облучения позволили представить этапы химической эволюции материи, предшествовавшие возникновению жизни (см. также Происхождение жизни ).
Геохимия вулканогенных и осадочных пород, гидрохимия , Х. атмосферы, биогеохимия постепенно формируют представления о планетарных миграциях химических элементов, биохимия — о жизненных циклах. На основе этих данных всё более наполняется конкретным содержанием учение В. И. Вернадского о решающей роли процессов жизнедеятельности для понимания судьбы химических элементов на нашей планете.
Большие успехи сделала органическая химия. Так, разработаны автоматические методы синтеза многих белков; установлена структура ряда важных природных веществ — тетродотоксина, гемоглобина, аспартат-аминотрансферазы, содержащей 412 аминокислот, и др.; синтезированы сложнейшие природные соединения — хинин, витамин B12 и даже хлорофилл. Огромное влияние оказала органическая химия на развитие молекулярной биологии. Органическая химия легла в основу создания мощной индустрии тяжелого органического синтеза.