Большая Советская Энциклопедия (ФО) - Большая Советская Энциклопедия "БСЭ". Страница 105

  Применяются маршрутная и блочная Ф. Наиболее эффективной является блочная Ф., которая строится по нескольким или многим маршрутам с применением ЭЦВМ: она позволяет в большей степени разредить полевую подготовку снимков, чем маршрутная.

  Лит.: Коншин М. Д., Аэрофотограмметрия, М., 1967; Лобанов А. Н., Аналитическая фотограмметрия, М., 1972; Бобир Н. Я., Лобанов А. Н., Федорук Г. Д., Фотограмметрия, М., 1974; Фототриангуляция с применением электронной цифровой вычислительной машины, 3 изд., М., 1975; Финарепский И. И., Уравнивание аналитической фототриангуляции, М., 1976.

  А. Н. Лобанов.

Большая Советская Энциклопедия (ФО) - i010-001-246476109.jpg

Рис. 1. к ст. Фототриангуляция.

Большая Советская Энциклопедия (ФО) - i010-001-253444201.jpg

Рис. 2. к ст. Фототриангуляция.

Фототропизм

Фототропи'зм (от фото... и греч. trópos – поворот), изменение направления роста органов растений под влиянием односторонне падающего света. Различают положительный Ф., например изгиб стебля к источнику света, плагиотропизм, или диатропизм , пластинок листьев, становящихся под углом к падающему свету, и отрицательный Ф. – изгиб органа в сторону, противоположную источнику света (например, верхушек некоторых корней, стеблей плюща). Один и тот же орган может быть положительно фототропичным при слабом свете, отрицательно – при сильном и совершенно не проявлять Ф. при среднем. Способность к Ф. у растений различных видов не одинакова. Она может изменяться и у растений одного вида (у молодых особей она при прочих равных условиях всегда больше, чем у более взрослых), а у одного и того же растения обнаруживается в более молодых органах. Ф. стеблей и листьев способствует равномерному расположению листьев на растении, вследствие чего они мало затеняют друг друга (см. Листовая мозаика ); благодаря положительному Ф., а также отрицательному геотропизму верхушки проростков выходят на поверхность почвы даже при очень глубокой заделке семян.

  Процесс Ф. слагается из ряда последовательных реакций: восприятия светового раздражения, возбуждения клеток и тканей, передачи возбуждения к клеткам и тканям ростовой зоны органа и, наконец, усиления или ослабления роста клеток и тканей этой зоны, влекущих за собой Ф. Восприятие светового возбуждения осуществляется специфическим фотоактивным комплексом, в состав которого входят каротиноиды и флавиновые пигменты. Проведение возбуждения по растению происходит с участием биоэлектрических токов, а также гормонов растений – ауксинов (о механизме этих процессов см. в ст. Тропизмы ).

  Проявление Ф. зависит от спектрального состава падающего света. Максимальная фототропическая чувствительность у растений обнаружена в спектре поглощения жёлтых и оранжевых пигментов – каротиноидов и флавинов; в связи с этим полагают, что световое раздражение воспринимают светочувствительные белки, содержащие эти пигменты. Каротиноидные «глазки» найдены также у некоторых одноклеточных водорослей, обнаруживающих фототаксис , и у спорангиеносцев грибов, способных к Ф.

  Лит.: Дарвин Ч., Способность к движению у растений, Соч., т. 8, М. – Л., 1941; Thimann К. V., Curry G. М., Phototropism, в кн.: Simposium light and life, Bait., 1961, p. 646–70.

Фототрофные бактерии

Фототро'фные бакте'рии, то же, что фотосинтезирующие бактерии .

Фотоупругость

Фотоупру'гость, фотоэластический эффект, пьезооптический эффект, возникновение оптической анизотропии в первоначально изотропных твёрдых телах (в т. ч. полимерах ) под действием механических напряжений. Открыта Т. И. Зеебеком (1813) и Д. Брюстером (1816). Ф. является следствием зависимости диэлектрической проницаемости вещества от деформации и проявляется в виде двойного лучепреломления и дихроизма , возникающих под действием механических нагрузок. При одноосном растяжении или сжатии изотропное тело приобретает свойства оптически одноосного кристалла с оптической осью, параллельной оси растяжения или сжатия (см. Кристаллооптика ). При более сложных деформациях, например при двустороннем растяжении, образец становится оптически двухосным.

  Ф. обусловлена деформацией электронных оболочек атомов и молекул и ориентацией оптически анизотропных молекул либо их частей, а в полимерах – раскручиванием и ориентацией полимерных цепей. Для малых одноосных растяжений или сжатий выполняется Брюстера закон . Dn = kP, где Dn – величина двойного лучепреломления (разность показателей преломления для обыкновенной и необыкновенной волн), Р – напряжение, k – упругооптическая постоянная (постоянная Брюстера). Для стекол k = 10-13 –10-12см2 /дин, для пластмасс (целлулоид) k = 10-12 –10-11см2 /дин.

  Ф. используется при исследовании напряжений в механических конструкциях, расчёт которых слишком сложен. Исследование двойного лучепреломления под действием нагрузок в выполненной из прозрачного материала модели (обычно уменьшенной) изучаемой конструкции позволяет установить характер и распределение в ней напряжений (см. Поляризационно-оптический метод исследования ). Ф. лежит в основе взаимодействия света и ультразвука в твёрдых телах.

  Лит.: Ландсберг Г. С., Оптика, 5 изд., М., 1976; Дитчберн Р., Физическая оптика, пер. с англ., М., 1965; Фрохт М. М., Фотоупругость, пер. с англ., т. 1–2, М. – Л., 1948–50; Физическая акустика, пер. с англ., т. 7, М., 1974, гл. 5; Александров А. Я., Ахметзянов М. Х., Поляризационно-оптические методы механики деформируемого тела, М., 1973.

  Э. М. Эпштейн.

Фотофильм

Фотофи'льм, фильм (обычно короткометражный), состоящий из неподвижных фотографий. Метод Ф., занимающий промежуточное положение между киноискусством и фотоискусством , получил некоторое распространение к середине 20 в. (например, «Взлётная полоса» французского режиссер К. Маркера, 1962).

Фотоформа

Фотофо'рма,негатив или диапозитив , используемый в процессе изготовления печатной формы (см. Глубокая печать , Офсетная печать ).

Фотохимический реактор

Фотохими'ческий реа'ктор , устройство в виде стеклянного или кварцевого сосуда, предназначенное для проведения химических реакций, протекающих под действием света (искусственного или солнечного). Используется в промышленных установках по производству различных веществ и материалов (например, в установках для нитрозирования циклогексана в процессе производства капролактама ). См. также Солнечная фотосинтетическая установка .

Фотохимия

Фотохи'мия, раздел химии, в котором изучаются реакции химические , происходящие под действием света. Ф. тесно связана с оптикой и оптическими излучениями . Первые фотохимические закономерности были установлены в 19 в. (см. Гротгуса закон , Бунзена – Роско закон ). Как самостоятельная область науки Ф. оформилась в 1-й трети 20 в., после открытия Эйнштейна закона , ставшего основным в Ф. Молекула вещества при поглощении кванта света переходит из основного в возбуждённое состояние, в котором она и вступает в химическую реакцию. Продукты этой первичной реакции (собственно фотохимической) часто участвуют в различных вторичных реакциях (т. н. темновые реакции), приводящих к образованию конечных продуктов. С этой точки зрения Ф. можно определить как химию возбуждённых молекул, образовавшихся при поглощении квантов света. Часто более или менее значительная часть возбуждённых молекул не вступает в фотохимическую реакцию, а возвращается в основное состояние в результате различного рода фотофизических процессов дезактивации. В ряде случаев эти процессы могут сопровождаться испусканием кванта света (флуоресценция или фосфоресценция). Отношение числа молекул, вступивших в фотохимическую реакцию, к числу поглощённых квантов света называются квантовым выходом фотохимической реакции. Квантовый выход первичной реакции не может быть больше единицы; обычно эта величина значительно меньше единицы из-за эффективной дезактивации. Вследствие же темновых реакций общий квантовый выход может быть значительно больше единицы.