Большая Советская Энциклопедия (УС) - Большая Советская Энциклопедия "БСЭ". Страница 20

  4) В импульсных ускорителях источником напряжения служат импульсные трансформаторы различных типов (например, Тесла трансформатор ), а также ёмкостные генераторы импульсного напряжения. В последних большое число конденсаторов заряжается параллельно от общего источника, затем при помощи разрядников осуществляется их переключение на последовательное, и на нагрузке возникает импульс напряжения с амплитудой до нескольких Мв.

  Линейные размеры У. в. определяются напряжением высоковольтного генератора и электрической прочностью его изоляции и ускоряющей системы. Ввиду малой электрической прочности воздуха при атмосферном давлении сооружение У. в. открытого типа с энергией свыше 1 Мэв обычно нецелесообразно. Ускорители на большую энергию размещаются в герметичных сосудах, заполненных газом при давлении, в 5–15 раз превышающем атмосферное. Это значительно уменьшает размеры ускорителей и снижает стоимость их сооружения. Особенно эффективно применение электроотрицательных газов (фреона и шестифтористой серы), а также их смесей с азотом и углекислотой. Импульсные ускорители с той же целью размещают внутри сосудов с жидким диэлектриком (трансформаторным маслом или дистиллированной водой).

  Основной способ повышения рабочего градиента напряжения в высоковольтной изоляции – секционирование изоляционных конструкций, т. е. разделение больших изоляционных промежутков на ряд малых отрезков при помощи металлических электродов с заданным распределением потенциала.

  Перезарядный ускоритель (тандем). Снижения требуемого напряжения высоковольтного генератора и тем самым уменьшения размеров У. в. можно также добиться, используя перезарядку (изменение знака заряда) частиц в процессе ускорения. В ускорителях такого типа (рис. 4 ), называемых тандемными, или перезарядными, отрицательные ионы из источника, находящегося под нулевым потенциалом, ускоряются по направлению к высоковольтному электроду генератора и там после взаимодействия с мишенью превращаются в положительные ионы. Затем они продолжают двигаться прямолинейно и вновь ускоряются тем же генератором напряжения. Мишень для перезарядки представляет собой заполненную газом трубку, струю пара или плёнку твёрдого вещества. Существуют установки из двух перезарядных ускорителей (рис. 5 ). В этом случае внутрь высоковольтного электрода 1-го ускорителя вводятся (инжектируются) нейтральные частицы малой энергии, которые после взаимодействия с мишенью превращаются в отрицательные ионы. Затем эти ионы ускоряются и инжектируются во 2-й ускоритель. Такая схема позволяет получить однозарядные ионы с утроенной энергией.

  Источники заряженных частицдля У. в. Источники электронов, часто наз. электронными пушками, обычно представляют собой катод, нагреваемый либо током, протекающим непосредственно по катоду, либо отдельным подогревателем, и систему электродов, формирующую испускаемый катодом поток электронов. В импульсных сильноточных У. в. успешно используются холодные катоды с автоэлектронной эмиссией (см. Туннельная эмиссия ) и с последующей взрывной эмиссией. При этом первоначально источником электронов являются мельчайшие выступы на поверхности катода, вблизи которых электрическое поле усиливается до ~ 107в/см. Затем электрический ток, протекающий по микровыступам, вызывает их быстрый нагрев и частичное испарение; облако пара под действием электронного пучка превращается в плазму , которая сама становится источником электронов.

  В ионных источниках заряженные частицы образуются обычно внутри разрядной камеры, наполненной газом или парами вещества при давлении 10-1 –10-3мм рт. ст., содержащими атомы соответствующего элемента. Первичная ионизация происходит под действием электрического разряда: высокочастотного (ВЧ источники; рис 6 ) дугового разряда в неоднородном электрическом и магнитном полях (дуоплазматрон, предложенный нем. физиком М. Арденне) и т.д. Ионы, образующиеся в области разряда, извлекаются оттуда полем т. н. вытягивающего электрода и попадают в ускоряющую систему. Положительные ионы получают из центральной части области разряда, где их концентрация выше, а отрицательные – с периферии этой области. Отрицательные ионы для перезарядных ускорителей могут быть получены также перезарядкой пучка положительных ионов на газовой или пароструйной мишени, при взаимодействии положительных ионов с твёрдой поверхностью, покрытой атомами щелочных металлов, и т.д.

  Ускоряющая система У. в. (ускорительная трубка). Ускорительная трубка является частью вакуумной системы У. в., давление в которой не должно превышать 10-5мм рт. ст. У большинства У. в. она представляет собой цилиндр, состоящии из диэлектрических колец, разделенных металлическими электродами с отверстием в центре, служащим для прохождения пучка заряженных частиц и откачки газа, поступающего из ионного источника и десорбируемого внутренней поверхностью системы (рис. 7 ). Кольца и электроды соединены друг с другом специальным клеем, пайкой или термодиффузионной сваркой, обеспечивающими вакуумное уплотнение. Ускорительная трубка – один из основных элементов У. в., недостаточная электрическая прочность которого часто ограничивает энергию ускоренных частиц.

  В отличие от изоляционных конструкций, работающих в сжатом газе, простое секционирование изолятора ускорительной трубки металлическими электродами оказывается малоэффективным. При напряжении высоковольтного генератора более 4–5 Мв в трубке резко возрастает интенсивность разрядных процессов, а её электрическая прочность снижается. Это явление, получившее название «эффект полного напряжения», объясняется наличием сквозного вакуумного канала, в котором происходит обмен вторичными заряженными частицами и их размножение. Причины появления таких частиц – облучение внутренней поверхности трубки рассеянными частицами пучка, эмиссия электронов с загрязнённых поверхностей, разряд по поверхности изоляторов и т.д. Для борьбы с «эффектом полного напряжения» предлагались различные конструкции ускорительных трубок. Наиболее известны ускорительные трубки с «наклонным полем», в которых электроды трубки устанавливаются под небольшим углом к плоскости её поперечного сечения, периодически изменяемым на противоположный. Ускоряемые частицы, имеющие значительную энергию, проходят по каналу такой трубки, не задевая его стенок, а возникающие внутри трубки вторичные частицы с меньшей энергией задерживаются электродами. Устранения «эффекта полного напряжения» удалось добиться также в ускорительных трубках с плоскими электродами, у которых электроды и изоляторы соединены пайкой, а рабочий вакуум составляет 10-8 –10-9мм рт. ст.

  Успехи в разработке новых конструкций высоковольтных генераторов и ускорительных трубок позволили повысить энергии протонов, получаемых в перезарядных У. в. до 40 Мэв. Многозарядные тяжёлые ионы могут быть ускорены до значительно больших энергий. Ток пучка крупнейших У. в. ионов составляет единицы – десятки мка при размерах пучка на мишени несколько мм и его расходимости менее 10-3рад.

  Краткая история развития У. в. Первый У. в. каскадного типа на энергию 700 кэв был построен в 1932 англ. физиками Дж. Кокрофтом и Э. Уолтоном. В предвоенные годы наибольшее развитие получили ЭСУ с высоковольтными генераторами Ван-де-Граафа. К 1940 благодаря применению для изоляции сжатого газа и использованию секционированных высоковольтных конструкций энергия ускоренных частиц была повышена до ~ 4 Мэв. В СССР первые ЭСУ были разработаны в Украинском физико-техническом институте под рук. А. К. Вальтера. В послевоенные годы увеличения энергии частиц, получаемых с помощью У. в., удалось добиться путём применения перезарядных ускорителей и ускорительных трубок с наклонным полем, предложенных Р. Ван-де-Граафом (США). Усовершенствования зарядной и ускоряющей систем ЭСУ были предложены Р. Хербом (США) в 60-х гг. Новые типы каскадных генераторов, позволившие увеличить мощность У. в. (динамитрон и трансформатор с изолированным сердечником), были разработаны в 1960–65 К. Моргенштерном (США) и Ван-де-Граафом. Большинство современных советских У. в. для научных исследований и использования в технике разработаны коллективом Научно-исследовательского института электрофизической аппаратуры им. Д. В. Ефремова. Трансформаторные ускорители предложены и разработаны в 60-х гг. коллективом института ядерной физики Сибирского отделения АН СССР под руководством Г. И. Будкера .