Большая Советская Энциклопедия (СЛ) - Большая Советская Энциклопедия "БСЭ". Страница 2
Наиболее распространённый процесс, обусловленный С. в., — (b-распад радиоактивных атомных ядер. Явление радиоактивности было обнаружено в 1896 А. А. Беккерелем . В течение первой трети 20 в. экспериментально исследовались энергетические спектры b-радиоактивных ядер (Э. Резерфорд , Дж. Чедвик , Л. Майтнер ). Результатом этого исследования явилась гипотеза (1931, В. Паули ) о том, что в b-распаде наряду с электроном (е- ) испускается ещё одна лёгкая частица, получившая позднее название нейтрино. И хотя экспериментально свободное нейтрино было обнаружено лишь в 1956, уже в 1934, исходя из гипотезы Паули, Э. Ферми построил теорию (b-распада, которая (с некоторыми модификациями) лежит в основе современной теории С. в.
Согласно теории Ферми, электрон и нейтрино (более точно: антинейтрино), вылетающие из (b-радиоактивного ядра, не находились в нём до этого, а возникают в момент распада. Это явление аналогично испусканию фотонов низкой энергии (видимого света) возбуждёнными атомами или фотонов высокой энергии (g-квантов) возбуждёнными ядрами. Как известно, свет испускается электроном при переходе с одного атомного уровня на другой, более низкий. Аналогично g-кванты испускаются нуклонами, переходящими с более высоких, возбуждённых уровней в ядре на более низкие. Первичной причиной этих процессов является взаимодействие электрических зарядов с электромагнитным полем: движущаяся заряженная частица — электрон или протон — возмущает электромагнитное поле, причём энергия частицы передаётся квантам поля — фотонам. Движущийся заряд создаёт электромагнитный ток, и обычно говорят о взаимодействии фотонов с электромагнитным током. В квантовой электродинамике взаимодействие электрона с фотоном описывается выражением типа
.
Здесь е — элементарный электрический заряд, являющийся константой электромагнитного взаимодействия (безразмерной константой, характеризующей интенсивность протекания электромагнитных процессов, является величина
1 /137 , где — постоянная Планка, с — скорость света), y — оператор уничтожения электрона, находящегося в исходном состоянии, — оператор рождения электрона в конечном состоянии, А — оператор рождения фотона. Т. о., вместо исходного электрона возникают две частицы: электрон, находящийся в другом состоянии (с меньшей энергией), и фотон.Более точно взаимодействие электрона с фотоном описывается выражением
. (1)
Индекс m в величине Аm принимает четыре значения: m = 0, 1, 2,3 и указывает, что величина Аm преобразуется как четырёхмерный вектор при Лоренца преобразованиях . [Напомним, что четырёхмерный вектор образуют, например, четырёхмерные координаты частицы хm (x = ct, x1 = х, x2 = у, x3 = z ) или её энергия и импульс рm (po = Е/с, p1 = px , p2 = ру , p3 = pz , где Е — энергия частицы, px , py , pz — компоненты её трёхмерного импульса).] Скалярное произведение двух четырёхмерных векторов определяется следующим образом: хm рm = xo po — x1 p1 — x2 p2 — x3p3 (по одинаковым индексам m производится суммирование.; для краткости знак суммы опускается). Поскольку электромагнитное поле является векторным, то о кванте этого поля — фотоне — говорят как о векторной частице. Величина
называется электромагнитным током. Чтобы взаимодействие (1) было лоренц-инвариантным, необходимо, чтобы электромагнитный ток также являлся четырёхмерным вектором и взаимодействие тока с фотонным полем представляло собой скалярное произведение двух четырёхмерных векторов (именно на это указывает повторение индекса m). Четыре матрицы gm (матрицы Дирака) введены для того, чтобы из операторов и y, которые являются четырёхмерными спинорами относительно преобразований Лоренца, сконструировать четырёхмерный вектор — электромагнигный ток.Уточним теперь смысл операторов
и y. Они описывают процессы не только с участием частиц (электронов), но и с участием античастиц (позитронов). Оператор y уничтожает электрон или рождает позитрон, а оператор рождает электрон или уничтожает позитрон. Оператор А описывает как рождение, так и уничтожение фотонов, поскольку абсолютно нейтральная частица — фотон — сама является своей античастицей. Т. о., взаимодействие описывает не только испускание и поглощение света электронами и позитронами, но и такие процессы, как рождение электрон-позитронных пар фотонами или аннигиляция этих пар в фотоны. Обмен фотоном (g) между двумя заряженными частицами приводит к взаимодействию этих частиц друг с другом. В результате возникает, например, рассеяние электрона протоном, которое схематически изображается Фейнмана диаграммой , представленной на рис. 1 . При переходе протона в ядре с одного уровня на другой это же взаимодействие может привести к рождению ядром электрон-позитронной пары (рис. 2 ).Теория b-распада Ферми по существу аналогична теории электромагнитных процессов. В основу теории Ферми положил взаимодействие двух «слабых токов», но взаимодействующих между собой не на расстоянии путём обмена частицей — квантом поля (фотоном в случае электромагнитного взаимодействия), а контактно. Это взаимодействие в современых обозначениях имеет вид:
(2)Здесь G — константа Ферми, или константа С. в., экспериментальное значение которой G » 10-49 эрг ×см3 ; величина
имеет размерность квадрата длины, и в единицах , где Mp — масса протона; — оператор рождения протона (уничтожения антипротона), n — оператор уничтожения нейтрона (рождения антинейтрона), — оператор рождения электрона (уничтожения позитрона), n — оператор уничтожения нейтрино (рождения антинейтрино). [Здесь и в дальнейшем операторы рождения и уничтожения частиц обозначены символами соответствующих частиц, набранными полужирным шрифтом.] Ток переводящий нейтрон в протон, получил впоследствии название нуклонного, а ток — лептонного (электрон и нейтрино — лептоны ). Ферми постулировал, что, подобно электромагнитному току, слабые токи также являются четырёхмерными векторами. Поэтому фермиевское взаимодействие называется векторным. (Заметим, что первоначальная идея Ферми заключалась в том, что нуклонный ток аналогичен электромагнитному току , а лептонный ток — электромагнитному полю Аm. Однако в написанное им выражение нуклонный и лептонный токи вошли равноправно, и дальнейшее развитие теории всё в большей степени подчёркивало это равноправие.)