Большая Советская Энциклопедия (РИ) - Большая Советская Энциклопедия "БСЭ". Страница 41

  Риманова кривизна играет важную роль в геометрических приложениях Р. г., тем более, что на всяком многообразии можно ввести некоторую риманову метрику. Так, например, топологическое строение полных римановых пространств (т. е. пространств, в которых всякая геодезическая бесконечно продолжаема) зависит от свойств его кривизны: всякое полное односвязное n-мерное риманово пространство гомеоморфно n-мерному евклидову пространству, если его кривизна во всех точках и по всем направлениям неположительна и гомеоморфна n-мерной сфере единичного радиуса, если его кривизна К удовлетворяет неравенствам

Большая Советская Энциклопедия (РИ) - i-images-155876951.png
, где d — некоторая постоянная. От величины кривизны полного риманова пространства R зависит и его диаметр d — точная верхняя грань расстояний между точками R, определяемых внутренней метрикой R: например, если К ³ Ko > , то
Большая Советская Энциклопедия (РИ) - i-images-107228930.png
d, если же
Большая Советская Энциклопедия (РИ) - i-images-118824015.png
, то R — сфера радиуса
Большая Советская Энциклопедия (РИ) - i-images-100623902.png
.

  Метрическая связность. Параллельное перенесение вдоль кривой L с концами А, В задаёт изометричное (т. е. сохраняющее расстояния) преобразование ti касательного пространства EA в точке А в касательное пространство EB в точке А. Дифференциал преобразования ti в точке А, т. е. главная линейная часть изменения ti; при переходе из А (xi) в близкую точку

Большая Советская Энциклопедия (РИ) - i-images-172482111.png
(xi+ dxi), определяет некоторый геометрический объект, называется римановой связностью, ассоциированной с данным параллельным перенесением. Аналитически эта связность выражается системой линейных дифференциальных форм

Большая Советская Энциклопедия (РИ) - i-images-136435765.png
, i, j, …, n.

  Однако в римановом пространстве R можно определить и другие связности, такие, что ассоциированные с ними параллельные перенесения также сохраняют метрический тензор; они называются метрическими связностями и определяются аналогичными коэффициентами

Большая Советская Энциклопедия (РИ) - i-images-175402087.png
, но уже не симметричными по индексам j,k и не выражающимися (подобно символам Кристоффеля) только через тензор gij и его производные. Отличие метрической связности от римановой оценивается так называемым тензором кручения:

Большая Советская Энциклопедия (РИ) - i-images-173381451.png
,

геометрический смысл которого иллюстрируется следующим образом. Рассмотрим в двумерном римановом пространстве метрической связности малый треугольник, образованный отрезками геодезических длины а, b, с и углами А, В, С. Тогда главная часть проекции кручения в точке А на сторону AB равна отношению величины с — acosB — bcosA к площади треугольника, а главная часть проекции кручения на перпендикуляр к AB — величине asinB — bsinA, деленной на площадь треугольника. Т. о., в римановом пространстве нулевого кручения имеют место теоремы косинусов и синусов обыкновенной тригонометрии с точностью до величин, малых в сравнении с площадью треугольника.

  Кривые, касательный вектор к которым переносится вдоль них параллельно, называются геодезическими соответствующей связности; они совпадают с римановыми геодезическими, если тензор

Большая Советская Энциклопедия (РИ) - i-images-197126727.png

кососимметричен по всем индексам.

  Подпространства. На m-мерном подмногообразии М риманова пространства R, задаваемом уравнениями xi= xi (u1,..., um), причём ранг матрицы

Большая Советская Энциклопедия (РИ) - i-images-140997898.png
 равен m, имеет место Р. г., определяемая метрическим тензором

Большая Советская Энциклопедия (РИ) - i-images-112545973.png

  М называется римановым подпространством пространства R.

  Достаточно малая область m-мерного риманова пространства R может быть погружена в евклидово пространство достаточно большой размерности N (т. е. допускает сохраняющее длины отображение на подмногообразие этого пространства). Известно, что

Большая Советская Энциклопедия (РИ) - i-images-179096350.png
; вопрос о минимальном значении N в общем случае ещё не решен, однако если коэффициенты метрической формы gij пространства R являются аналитическими функциями (т. е. разлагаются в сходящиеся степенные ряды), то
Большая Советская Энциклопедия (РИ) - i-images-101532963.png
. Относительно задачи погружения в целом (представляющей интерес для физики калибровочных полей) известно ещё меньше.

  Наиболее подробно исследованы погружения двумерных римановых пространств. Так, например: 1) двумерное полное риманово пространство положительной кривизны К. погружается в виде замкнутой выпуклой поверхности (овалоида) в трёхмерное риманово пространство кривизны не меньшей К [проблема Г. Вейля(1916), решенная немецким математиком Х. Леви (1937) и А. Д. Александровым(1941) для погружения в евклидово пространство и А. В. Погореловым (1957) для риманова пространства], причём любые два погружения, имеющие общую точку и общее соприкасающееся пространство в ней, совпадают [т. е. овалоид однозначно определён своей метрикой, немецкий математик С. Э. Кон-Фоссен (1927), А. В. Погорелов (1948)]. 2) Двумерное полное риманово пространство отрицательной кривизны K £ Ko < 0 не допускает погружения в виде регулярной поверхности [советский математик Н. В. Ефимов (1963), частный случай плоскости Лобачевского (К =1) разобран Д. Гильбертом (1901)]. 3) Двумерное риманово пространство, гомеоморфное тору, допускает погружение в четырёхмерное евклидово пространство [советский математик Э. Г. Позняк (1973)].

  Приложения и обобщения римановой геометрии. 1) Поскольку Р. г. определяется заданием дважды ковариантного симметричного тензора, постольку всякую физическую задачу, сводящуюся к изучению такого тензорного поля, можно формулировать как задачу Р. г. В частности, к тензорным полям такого типа относятся различные физические величины, характеризующие упругие, оптические, термодинамические, диэлектрические, пьезомагнитные и другие свойства анизотропных тел. При этом симметрия коэффициентов gijявляется отражением одного из фундаментальных физических законов — закона взаимности. Так, задача о теплопроводности анизотропного тела, решенная ещё Риманом (1861), явилась первым приложением Р. г.

  2) Рассмотрение конфигурационного пространства в механике системы с n степенями свободы позволило представить в ясной геометрической форме ряд механических задач. Так, например, траектории свободного (т. е. в отсутствии обобщённых сил) движения голономной механической системы с кинетической энергией

Большая Советская Энциклопедия (РИ) - i-images-102968951.png

где

Большая Советская Энциклопедия (РИ) - i-images-168248223.png
  обобщённые скорости, являются геодезическими соответствующего n-мерного риманова пространства с метрическим тензором gij. О некоторых других фактах упоминалось выше. Аналогичную интерпретацию получает и движение в поле сил, имеющих потенциал (см. Герца принцип).