Большая Советская Энциклопедия (РА) - Большая Советская Энциклопедия "БСЭ". Страница 109
Идентификация радиоактивных изотопов и количественное их определение осуществляются путём измерения g- или a-активности облученных мишеней или веществ природного происхождения на g- и a-спектрометрах. Радиометрическая аппаратура позволяет анализировать сложные по составу смеси радиоактивных изотопов без разрушения исходного вещества. При анализе объектов, содержащих большое число радиоактивных изотопов, или объектов, в которых относительные концентрации различных радиоактивных изотопов варьируют в широком диапазоне, а также в тех случаях, когда распад исследуемого радиоактивного изотопа сопровождается испусканием только b-частиц или рентгеновским излучением, исходное вещество растворяют в воде или кислоте. К раствору добавляют изотопные или неизотопные носители и проводят различные химические операции разделения смеси на исследуемые элементы и последующей их очистки (с этой целью наиболее часто используют методы осаждения, экстракции, хроматографии, электролиза, дистилляции и др.). Затем с помощью радиометрических счётчиков и спектрометров ядерных частиц идентифицируют и определяют абсолютные активности радиоактивных изотопов, выделенных в радиохимически и химически чистом состояниях. Поражающее действие радиоактивных излучений требует соблюдения особой техники безопасности (см. Дозиметрия,Радиохимическая лаборатория).
Современный Р. а. (исторические сведения см. в ст. Радиохимия) получил широкое практическое применение при решении многих аналитических вопросов, возникающих при производстве ядерного топлива, при открытии и изучении свойств новых радиоактивных элементов и изотопов в активационном анализе, в исследовании продуктов различных ядерных реакций. Р. а. используется для обнаружения на поверхности Земли радиоактивных продуктов ядерных взрывов, для изучения индуцированной космическим излучением радиоактивности метеоритов и поверхностных слоев Луны и в ряде др. случаев.
Лит.: Старик И. Е., Основы радиохимии, 2 изд., Л., 1969; Радиохимический анализ продуктов деления, [под ред. Ю. М. Толмачева], М. — Л., 1960; Радиохимия и химия ядерных процессов, под ред. А. Н. Мурина [и др.], Л., 1960; Лаврухина А. К., Малышева Т. В., Павлецкая Ф. И., Радиохимический анализ, М., 1963; Лаврухина А. К., Поздняков А. А., Аналитическая химия технеция, прометия, астатина и франция, М., 1966; Мец Ч., Уотербер и Г., Аналитическая химия трансурановых элементов, пер. с англ., М., 1967.
Л. К. Лаврухина.
Радиохимия
Радиохи'мия, область химии, изучающая химию радиоактивных изотопов, элементов и веществ, законы их физико-химического поведения, химию ядерных превращений и сопутствующие им физико-химические процессы. Предмет, методы и объекты исследования Р. позволяют выделить в ней следующие разделы: общая Р.; химия ядерных превращений; химия радиоактивных элементов и прикладная Р.
Общая Р. изучает физико-химические закономерности поведения радиоактивных изотопов и элементов. Радиоактивные изотопы по химическим свойствам практически не отличаются от нерадиоактивных. В природных объектах, рудах, в продуктах, получаемых искусственно, в растворах, образующихся после переработки сырья, они присутствуют в сверхнизких концентрациях; претерпеваемый ими распад сопровождается ядерным излучением (см. Радиоактивность). Большинство природных радиоактивных изотопов — дочерние изотопы, продукты распада 238U, 235U и 232Th (см. Радиоактивные ряды). Концентрация некоторых из них в равновесных рудах U и Th на 1 г чистого материнского изотопа приведены ниже.
Дочерний изотоп, г
Материнский изотоп | 210Po | 223Fr | 222Rn | 227Ac | 226Ra | 228Ra | 228Ac | 231Pa |
238U | 7,6×10-11 | 2,14×10-13 | 3,4×10-7 | |||||
235U | 1,3×10-15 | 1×10-10 | 5,6×10-5 | |||||
232Th | 1,5×10-9 | 5×10-14 |
Радиоактивные изотопы получают и искусственным путём — облучением различных веществ ядерными частицами (выход порядка 10-8—10-12% по массе). В ряде случаев в большом количестве др. атомов находятся сотни, десятки и даже единицы атомов радиоактивных изотопов. (Лишь в производстве ядерного горючего Pu получается в относительно больших количествах, хотя и его концентрация в облученном нейтронами U мала.). Выделять радиоактивные элементы и изотопы приходится, следовательно, из ультраразбавленных систем, а массы их в большинстве случаев не поддаются взвешиванию. Физико-химическое поведение ультраразбавленных растворов весьма сложно; оно может описываться законами идеальных растворов, однако иногда из-за побочных процессов, связанных с адсорбцией, радиолизом и пр., эти законы не соблюдаются. В общей Р. рассматривается изотопный обмен, процессы распределения микроколичеств радиоактивных изотопов между фазами, процессы соосаждения, адсорбции и экстракции, электрохимия радиоактивных элементов, состояние радиоактивных изотопов в ультраразбавленных системах — дисперсность (образование радиоколлоидов) и комплексообразование.
Химия ядерных превращений включает изучение реакций атомов, образующихся при ядерных превращениях («горячих» атомов), продуктов ядерных реакций, методы получения, концентрирования и выделения радиоактивных изотопов и их ядерных изомеров, а также превращений радиоактивных веществ под действием собственного излучения, изучение их свойств.
Химия радиоактивных элементов — это химия естественных (природных) радиоактивных элементов от Po до U (№ № 84—92) и искусственных: Te (№ 43), Pm (№ 61), Np (№ 94) и всех последующих до № 106. Условно к этому разделу относят химию и технологию ядерного горючего — получение и химическое выделение 239Pu из облученного урана, 233U — из облученного нейтронами тория и 235U — из естественной смеси изотопов.
Прикладная Р. включает разработку методов синтеза меченых соединений и применения радиоактивных изотопов в химической науке и промышленности (см. Изотопные индикаторы) и ядерных излучений в химическом анализе (например, ядерная g-резонансная спектроскопия).
Объектами исследования в Р. являются радиоактивные вещества, содержащие радиоактивные изотопы, многие из которых характеризуются ограниченным временем существования и ядерным (радиоактивным) излучением; это обусловливает специфические особенности методов исследования.
Радиоактивное излучение даёт возможность использовать в Р. специфические радиометрические методы измерения количества радиоактивного вещества (см. Радиометрический анализ и Радиохимический анализ) и в то же время вызывает необходимость применения особой техники безопасности при работе, т.к. радиоактивное излучение в дозах, превышающих предельно допустимые, вредно для здоровья человека (см. Дозиметрия). Методы измерения радиоактивности превосходят по чувствительности все др. методы и позволяют иметь дело с минимальным количеством вещества, не поддающимся изучению какими-либо другими методами. С помощью обычных в радиохимической практике приборов можно определить, например, 10—10—10—15г 226Ra, 10—17г32P, 1017г232Rn. Используя особо чувствительные методы регистрации радиоактивного распада, можно определить наличие отдельных атомов радиоактивного изотопа, установить факт их распада.