Большая Советская Энциклопедия (МЕ) - Большая Советская Энциклопедия "БСЭ". Страница 47
Физические и химические свойства. Цвет М. красный, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Металл имеет гранецентрированную кубическую решётку с параметром а = 3,6074
; плотность 8,96 г/см3 (20 °С). Атомный радиус 1,28 ; ионные радиусы Cu+ 0,98 ; Cu2+ 0,80 ; tпл. 1083 °С; tкип. 2600 °С; удельная теплоёмкость (при 20 °С) 385,48 дж /(кг·К ), то есть 0,092 кал /(г· °С). Наиболее важные и широко используемые свойства М.: высокая теплопроводность — при 20 °С 394,279 вт /(м·К ), то есть 0,941 кал /(см·сек· °С); малое электрическое сопротивление — при 20 °С 1,68·10-8ом·м . Термический коэффициент линейного расширения 17,0·10-6 . Давление паров над М. ничтожно, давление 133,322 н/м2 (то есть 1 мм рт. ст. ) достигается лишь при 1628 °С. М. диамагнитна; атомная магнитная восприимчивость 5,27·10-6 . Твёрдость М. по Бринеллю 350 Мн/м2 (то есть 35 кгс/мм2 ); предел прочности при растяжении 220 Мн/м2 (то есть 22 кгс/мм2 ); относительное удлинение 60 %, модуль упругости 132·103Мн/м2 (то есть 13,2·103кгс/мм2 ). Путём наклёпа предел прочности может быть повышен до 400—450 Мн/м2 , при этом удлинение уменьшается до 2 %, а электропроводность уменьшается на 1—3 %. Отжиг наклёпанной М. следует проводить при 600—700 °С. Небольшие примеси Bi (тысячные доли % ) и Pb (сотые доли % ) делают М. красноломкой, а примесь S вызывает хрупкость на холоде.По химическим свойствам М. занимает промежуточное положение между элементами первой триады VIII группы и щелочными элементами I группы системы Менделеева. М., как и Fe, Со, Ni, склонна к комплексообразованию, даёт окрашенные соединения, нерастворимые сульфиды и т. д. Сходство с щелочными металлами незначительно. Так, М. образует ряд одновалентных соединений, однако для неё более характерно 2-валентное состояние. Соли одновалентной М. в воде практически нерастворимы и легко окисляются до соединений 2-валентной М.; соли 2-валентной М., напротив, хорошо растворимы в воде и в разбавленных растворах полностью диссоциированы. Гидратированные ионы Cu2+ окрашены в голубой цвет. Известны также соединения, в которых М. 3-валентна. Так, действием перекиси натрия на раствор куприта натрия Na2 CuO2 получен окисел Cu2 O3 — красный порошок, начинающий отдавать кислород уже при 100 °С. Cu2 O3 — сильный окислитель (например, выделяет хлор из соляной кислоты).
Химическая активность М. невелика. Компактный металл при температурах ниже 185 °С с сухим воздухом и кислородом не взаимодействует. В присутствии влаги и CO2 на поверхности М. образуется зелёная плёнка основного карбоната. При нагревании М. на воздухе идёт поверхностное окисление; ниже 375 °С образуется CuO, а в интервале 375—1100 °С при неполном окислении М. — двухслойная окалина, в поверхностном слое которой находится CuO, а во внутреннем — Cu2 O (см. Меди окислы ). Влажный хлор взаимодействует с М. уже при обычной температуре, образуя хлорид CuCl2 , хорошо растворимый в воде. М. легко соединяется и с другими галогенами (см. Меди галогениды ). Особое сродство проявляет М. к сере и селену; так, она горит в парах серы (см. Меди сульфиды ). С водородом, азотом и углеродом М. не реагирует даже при высоких температурах. Растворимость водорода в твёрдой М. незначительна и при 400 °С составляет 0,06 мг в 100 г М. Водород и другие горючие газы (CO, CH4 ), действуя при высокой температуре на слитки М., содержащие Cu2 O, восстановляют её до металла с образованием CO2 и водяного пара. Эти продукты, будучи нерастворимыми в М., выделяются из неё, вызывая появление трещин, что резко ухудшает механические свойства М.
При пропускании NH3 над раскалённой М. образуется Cu3 N. Уже при температуре каления М. подвергается воздействию окислов азота, а именно NO, N2 O (с образованием Cu2 O) и NO2 (с образованием CuO). Карбиды Cu2 C2 и CuC2 могут быть получены действием ацетилена на аммиачные растворы солей М. Нормальный электродный потенциал М. для реакции Cu2+ + 2e ® Сu равен +0,337 в , а для реакции Cu+ + е ® Сu равен +0,52 в . Поэтому М. вытесняется из своих солей более электроотрицательными элементами (в промышленности используется железо) и не растворяется в кислотах-неокислителях. В азотной кислоте М. растворяется с образованием Cu(NO3 )2 и окислов азота, в горячей концентрации H2 SO4 — с образованием CuSO4 и SO2 , в нагретой разбавленной H2 SO4 — при продувании через раствор воздуха. Все соли М. ядовиты (см. Меди карбонаты , Меди нитрат , Меди сульфат ).
М. в двух- и одновалентном состоянии образует многочисленные весьма устойчивые комплексные соединения. Примеры комплексных соединений одновалентной М.: (NH4 )2 CuBr3 ; K3 Cu(CN)4 — комплексы типа двойных солей; [Сu {SC (NH2 )}2 ]CI и другие. Примеры комплексных соединений 2-валентной М.: CsCuCI3 , K2 CuCl4 — тип двойных солей. Важное промышленное значение имеют аммиачные комплексные соединения М.: [Сu (NH3 )4 ] SO4 , [Сu (NH3 )2 ] SO4 .
Получение. Медные руды характеризуются невысоким содержанием М. Поэтому перед плавкой тонкоизмельчённую руду подвергают механическому обогащению; при этом ценные минералы отделяются от основной массы пустой породы; в результате получают ряд товарных концентратов (например, медный, цинковый, пиритный) и отвальные хвосты.
В мировой практике 80 % М. извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала. В процессе плавки, вследствие большего сродства М. к сере, а компонентов пустой породы и железа к кислороду, М. концентрируется в сульфидном расплаве (штейне), а окислы образуют шлак. Штейн отделяют от шлака отстаиванием.
На большинстве современных заводов плавку ведут в отражательных или в электрических печах. В отражательных печах рабочее пространство вытянуто в горизонтальном направлении; площадь пода 300 м2 и более (30 м ´ 10 м ), необходимое для плавления тепло получают сжиганием углеродистого топлива (естественный газ, мазут, пылеуголь) в газовом пространстве над поверхностью ванны. В электрических печах тепло получают пропусканием через расплавленный шлак электрического тока (ток подводится к шлаку через погруженные в него графитовые электроды).
Однако и отражательная, и электрическая плавки, основанные на внешних источниках теплоты, — процессы несовершенные. Сульфиды, составляющие основную массу медных концентратов, обладают высокой теплотворной способностью. Поэтому всё больше внедряются методы плавки, в которых используется теплота сжигания сульфидов (окислитель — подогретый воздух, воздух, обогащенный кислородом, или технический кислород). Мелкие, предварительно высушенные сульфидные концентраты вдувают струей кислорода или воздуха в раскалённую до высокой температуры печь. Частицы горят во взвешенном состоянии (кислородно-взвешенная плавка). Можно окислять сульфиды и в жидком состоянии; эти процессы усиленно исследуются в СССР и за рубежом (Япония, Австралия, Канада) и становятся главным направлением в развитии пирометаллургии сульфидных медных руд.