Большая Советская Энциклопедия (МО) - Большая Советская Энциклопедия "БСЭ". Страница 17

  При изучении процессов теплообмена тоже широко используют М. ф. Для случая переноса тепла конвекцией определяющими критериями подобия являются Нуссельта числоNu = al / l,Прандтля числоPr = n /a , Грасхофа число Gr = bgl3 DT /n2 , а также число Рейнольдса Re , где a — коэффициент теплоотдачи, а коэффициент температуропроводности, # — коэффициент теплопроводности среды (жидкости, газа), n — кинематический коэффициент вязкости, b — коэффициент объёмного расширения, DТ — разность температур поверхности тела и среды. Обычно целью М. ф. является определение коэффициента теплоотдачи, входящего в критерий Nu , для чего опытами на моделях устанавливают зависимость Nu от других критериев. При этом в случае вынужденной конвекции (например, теплообмен при движении жидкости в трубе) становится несущественным критерий Gr , а в случае свободной конвекции (теплообмен между телом и покоящейся средой) — критерий Re . Однако к значительным упрощениям процесса М. ф. это не приводит, особенно из-за критерия Pr , являющегося физической константой среды, что при выполнении условия Prм = Prн практически исключает возможность использовать на модели среду, отличную от натурной. Дополнительные трудности вносит и то, что физические характеристики среды зависят от её температуры. Поэтому в большинстве практически важных случаев выполнить все условия подобия не удаётся; приходится прибегать к приближённому моделированию. При этом отказываются от условия равенства критериев, мало влияющих на процесс, а др. условиям (например, подобие физических свойств сред, участвующих в теплообмене) удовлетворяют лишь в среднем. На практике часто используют также т. н. метод локального теплового моделирования, идея которого заключается в том, что условия подобия процессов для модели и натуры выполняются только в той области модели, где исследуется процесс теплообмена. Например, при исследовании теплоотдачи в системе однотипных тел (шаров, труб) в теплообмене на модели может участвовать лишь одно тело, на котором выполняют измерения, а остальные служат для обеспечения геометрического подобия модели и натуры.

  В случаях переноса тепла теплопроводностью (кондукцией) критериями подобия являются Фурье число Fo = at/l2 и число Био Bi = al /l, где t — характерный промежуток времени (например, период). Для апериодических процессов (нагревание, охлаждение) t обычно отсутствует и параметр Fo выпадает, а отношение at/l2 определяет безразмерное время. При М. ф. таких процессов теплообмена удаётся в широких пределах изменять не только размеры модели, но и темп протекания процесса.

  Однако чаще для исследования процессов переноса тепла теплопроводностью применяют моделирование аналоговое .

  Электродинамическое моделирование применяется для исследования электромагнитных и электромеханических процессов в электрических системах. Электродинамическая модель представляет собой копию (в определённом масштабе) натурной электрической системы с сохранением физической природы основных её элементов. Такими элементами модели являются синхронные генераторы, трансформаторы, линии передач, первичные двигатели (турбины) и нагрузка (потребители электрической энергии), но число их обычно значительно меньше, чем у натурной системы. Поэтому и здесь моделирование является приближённым, причём на модели по возможности полно представляется лишь исследуемая часть системы.

  Особый вид М. ф. основан на использовании специальных устройств, сочетающих физические модели с натурными приборами. К ним относятся стенды испытательные для испытания машин, наладки приборов и т. п., тренажеры для тренировки персонала, обучаемого управлению сложными системами или объектами, имитаторы, используемые для исследования различных процессов в условиях, отличных от обычных земных, например при глубоком вакууме или очень высоких давлениях, при перегрузках и т. п. (см. Барокамера , Космического полёта имитация ).

  М. ф. находит многочисленные приложения как при научных исследованиях, так и при решении большого числа практических задач в различных областях техники. Им широко пользуются в строительном деле (определение усталостных напряжений, эксплуатационных разрушений, частот и форм свободных колебаний, виброзащита и сейсмостойкость различных конструкций и др.); в гидравлике и в гидротехнике (определение конструктивных и эксплуатационных характеристик различных гидротехнических сооружений, условий фильтрации в грунтах, моделирование течений рек, волн, приливов и отливов и др.); в авиации, ракетной и космической технике (определение характеристик летательных аппаратов и их двигателей, силового и теплового воздействия среды и др.); в судостроении (определение гидродинамических характеристик корпуса, рулей и судоходных двигателей, ходовых качеств, условий спуска и др.); в приборостроении; в различных областях машиностроения, включая энергомашиностроение и наземный транспорт; в нефте- и газодобыче, в теплотехнике при конструировании и эксплуатации различных тепловых аппаратов; в электротехнике при исследованиях всевозможных электрических систем и т. п.

  Лит.: Седов Л. И., Методы подобия и размерности в механике, М., 1972; Гухман А. А., Введение в теорию подобия, М., 1963; Эйгенсон Л. С., Моделирование, М., 1952; Кирпичев М. В., Михеев М. А., Моделирование тепловых устройств, М. — Л., 1936; Шнейдер П. Дж., Инженерные проблемы теплопроводности, пер. с англ., М., 1960; Веников В. А., Иванов-Смоленский А. В., Физическое моделирование электрических систем, М. — Л., 1956.

  С. М. Тарг, С. Л. Вишневецкий, В. А. Арутюнов.

«Моделист-конструктор»

«Модели'ст-констру'ктор», ежемесячный популярный научно-технический журнал ЦК ВЛКСМ. Издаётся с 1966 в Москве (с 1962 выходил как альманах «Юный моделист-конструктор»). Освещает вопросы научно-технического творчества советской молодёжи, рационализаторской работы, конструирования новой любительской техники, деятельности общественных конструкторских бюро, клубов, кружков юных техников и др.; рассказывает об истории русской, советской и зарубежной техники, о боевых подвигах советских лётчиков, танкистов, моряков. Печатаются чертежи, описания и другие материалы для моделистов и конструкторов-любителей. Имеется раздел, посвященный военно-техническим видам спорта. Тираж (1974) 400 тыс. экземпляров.

Модель (в науке)

Моде'ль (франц. modèle, итал. modello, от лат. modulus — мера, мерило, образец, норма),

  1) образец, служащий эталоном (стандартом) для серийного ли массового воспроизведения (М. автомобиля, М. одежды и т. п.), а также тип , марка какого-либо изделия, конструкции.

  2) Изделие (изготовленное из дерева, глины, воска, гипса и др.), с которого снимается форма для воспроизведения в другом материале (металле, гипсе, каине и др.). См. также Лекало , Литейная модель , Плаз , Шаблон .

  3) Человек, позирующий художнику (натурщик), и вообще изображаемые объекты («натура»).

  4) Устройство, воспроизводящее, имитирующее (обычно в уменьшенном, «игрушечном» масштабе) строение и действие какого-либо другого устройства («настоящего») в научных (см. ниже), практических (например, в производственных испытаниях) или спортивных (см. Моделизм ) целях.

  Модель (в широком понимании) — образ (в т. ч. условный или мысленный — изображение, описание, схема, чертёж, график, план, карта и т. п.) или прообраз (образец) какого-либо объекта или системы объектов («оригинала» данной М.), используемый при определённых условиях в качестве их «заместителя» или «представителя». Так, М. Земли служит глобус, а М. различных частей Вселенной (точнее — звёздного неба) — экран планетария. В этом же смысле можно сказать, что чучело животного есть М. этого животного, а фотография на паспорте (или список примет и вообще любой перечень паспортных или анкетных данных) — М. владельца паспорта (хотя живописец, напротив, называет М. именно изображаемого им человека). В математике и логике М. какой-либо системы аксиом обычно называют совокупность объектов, свойства которых и отношения между которыми удовлетворяют данным аксиомам , в терминах которых эти объекты описываются.