Большая Советская Энциклопедия (МА) - Большая Советская Энциклопедия "БСЭ". Страница 42

  Лит.: Логачев А. А., Магниторазведка, 3 изд., Л., 1968; Федынский В. В., Разведочная геофизика, 2 изд., М., 1967; Магниторазведка, М., 1969 (Справочник геофизика, т. 6).

  В. Е. Никитский.

Магнитная структура

Магни'тная структу'ра атомная, периодическое пространственное расположение и ориентация атомных магнитных моментов в магнитоупорядоченном кристалле (ферро-, ферри- или антиферромагнетике). Атомную М. с. следует отличать от доменной магнитной структуры, определяемой характером и взаимным расположением доменов . Периодичность расположения атомных магнитных моментов в пространстве определяется кристаллической структурой вещества. За взаимную ориентацию моментов ответственно обменное взаимодействие электрич. природы, за их общую ориентацию относительно кристаллографических осей — силы магнитной анизотропии. Более сложные (и слабые) типы магнитного взаимодействия могут усложнять атомную М. с. (см. Метамагнетик ).

  Различают два основных класса магнитных веществ, связанных с определённой атомной М. с.: вещества с ненулевым суммарным макроскопическим магнитным моментом М (М ¹ 0) и вещества с М = 0. Первому случаю соответствует ферромагнитная М. с. (рис. 1 , а): магнитные моменты всех атомов выстраиваются вдоль одного направления (оси лёгкого намагничивания ), которое может быть различным у разных кристаллов. Второму случаю соответствует антиферромагнитная М. с. (рис. 1 , б): у каждого магнитного момента в ближайшем окружении имеется компенсирующий момент, ориентированный строго антипараллельно. В зависимости от характера ближайшего окружения могут осуществляться различные антиферромагнитные М. с. (например, структуры, показанные на рис. 1 , б, в и г). Антиферромагнитные М. с. могут иметь периоды большие, чем периоды атомной структуры, в целое число раз. Иногда осуществляются антиферромагнитные М. с. с ориентацией магнитных моментов вдоль двух или трёх осей и ещё более сложные — зонтичные, треугольные и другие (рис. 1 , д, е).

  Близки к антиферромагнитной М. с. ферримагнитные структуры с М ¹ 0. Они имеют место, когда антиферромагнитная М. с. образуется атомами или ионами с разными по величине магнитными моментами (рис. 1 , ж). При этом значение М определяется величиной разности моментов двух магнитных подрешёток (систем одинаково ориентированных магнитных моментов). Другой случай осуществляется в слабых ферромагнетиках: наличие дополнительных сил межатомного воздействия приводит к неколлинеарности магнитных моментов и появлению суммарной ферромагнитной составляющей (рис. 1, з ). См. Слабый ферромагнетизм .

  Более сложный (дальнодействующий) характер межатомного взаимодействия в некоторых случаях приводит к установлению геликоидальных М. с. В последних магнитные моменты соседних атомов повёрнуты друг относительно друга так, что концы изображающих их векторов лежат на одной спиральной линии. В зависимости от величины проекции магнитных моментов на направление оси спирали различают несколько видов геликоидальных М. с. (рис. 2 ). Существенное отличие геликоидальных М. с. от остальных М. с. заключается в том, что в общем случае шаг спирали несоизмерим с соответствующим периодом кристаллической решётки и, кроме того, зависит от температуры.

  Полная классификация М. с. основывается на теории магнитной симметрии , учитывающей не только расположение, но и ориентацию атомных магнитных моментов в кристалле. В число преобразований магнитной симметрии, кроме обычных поворотов вокруг осей симметрии, отражения в плоскостях симметрии и трансляций, дополнительно входит преобразование R , изменяющее направления магнитных моментов на противоположные. Введение преобразования R увеличивает число классов симметрии с 32 до 122, а число пространственных групп симметрии — с 230 до 1651. Вещества, обладающие М. с., описываются теми группами магнитной симметрии, в которые R входит в виде произведений с обычными элементами симметрии кристаллов .

  М. с. кристалла и его физические (в первую очередь магнитные) свойства тесно взаимосвязаны. Поэтому косвенные суждения о М. с. могут быть высказаны на основе данных об этих физических свойствах вещества. Прямые данные о М. с. кристаллов позволяет получить магнитная нейтронография . Со времени первой работы в этой области (1949) нейтронографически установлена М. с. более тысячи различных металлов, сплавов и химических соединений. Для установления М. с. может быть использован также ядерный гамма-резонанс (Мёссбауэра эффект).

  Лит.: Изюмов Ю. А., Озеров Р. П., Магнитная нейтронография. М., 1966: Вонсовский С. В., Магнетизм, М., 1971: Копцик В. А., Шубниковские группы, М., 1966.

  Р. П. Озеров.

Большая Советская Энциклопедия (МА) - i010-001-266257831.jpg

Рис. 2. Примеры спиральных магнитных структур (l — период спирали): слева — простая спираль с нулевым значением проекции магнитного момента на ось спирали; справа — ферромагнитная (коническая) спираль с постоянным значением проекции магнитного момента на ось спирали.

Большая Советская Энциклопедия (МА) - i010-001-275266506.jpg

Рис. 1. Типы магнитных структур: а — ферромагнитная, периоды атомной а и магнитной ам элементарных ячеек совпадают; б, в и г — антиферромагнитные структуры, ам в некоторых направлениях в два раза больше а; д — треугольная; е — зонтичная; ж — ферромагнитная; з — слабоферромагнитная, угол склонения на рисунке сильно увеличен.

Магнитная съёмка

Магни'тная съёмка, систематические измерения элементов земного магнетизма и составление по данным измерений магнитных карт . Различают общую и детальную М. с. Общая М. с., осуществляемая на больших площадях при сравнительно редкой сети пунктов измерения (отстоящих на десятки и сотни км ), позволяет изучить основные закономерности распределения геомагнитного поля. Карты, составленные на основе общей М. с., необходимы для морской и воздушной навигации, обнаружения значительных магнитных аномалий , изучения векового хода элементов земного магнетизма. Детальная М. с. с расстоянием между пунктами (маршрутами) измерений от 1 м до нескольких км служит главным образом для геологического картирования и поиска рудных месторождений (см. Магнитная разведка ).

  При М. с. обычно измеряют модуль вектора полной напряжённости геомагнитного поля, однако для целей геологической разведки часто ограничиваются относительным определением вертикальной составляющей геомагнитного поля. М. с. осуществляют различного типа магнитометрами , устанавливаемыми на спутниках, самолётах (см. Аэромагнитная съёмка ), немагнитных судах и наземных видах транспорта. Непрерывные наблюдения за изменениями геомагнитного поля с течением времени (за вековым ходом поля) проводятся сетью магнитных обсерваторий .

  Лит.: Яновский Б. М., Земной магнетизм, [3 изд.], т. 1, Л., 1964.

Магнитная текстура

Магни'тная тексту'ра, см. Текстура магнитная .

Магнитная термометрия

Магни'тная термоме'трия, метод измерения температур, применяемый в основном ниже 1 К. В М. т. термометрическим свойством служит магнитная восприимчивость c парамагнетика. Для М. т. подбирают парамагнетики, у которых c простейшим образом зависит от температуры: c = С / Т (см. Кюри закон ). По измеренному в слабом внешнем магнитном поле значению c и известной для данного парамагнетика постоянной Кюри C может быть определена так называемая магнитная температура Т*. В области температур, в которой выполняется закон Кюри, Т* совпадает с термодинамической температурой Т. При понижении температуры закон Кюри перестаёт быть точным и Т* может заметно отличаться от Т. Практически магнитную температуру переводят в термодинамическую по таблицам и кривым, составленным на основании тщательных исследований зависимости восприимчивости c парамагнитных солей от температуры (см. Магнитное охлаждение ).