Большая Советская Энциклопедия (МА) - Большая Советская Энциклопедия "БСЭ". Страница 54

  Существуют и иные механизмы стабилизации желобковой неустойчивости. Например, в радиационных поясах Земли она стабилизируется за счёт электрического контакта плазмы с ионосферой : заряженные частицы ионосферы могут компенсировать электрические поля, возникающие в радиационных поясах. Борьба с желобковой и другими видами неустойчивости плазмы составляет одну из основных задач лабораторных исследований М. л.

  Лит.: Арцимович Л. А., Элементарная физика плазмы, М., 1966; Роуз Д. — Дж., Кларк М., физика плазмы и управляемые термоядерные реакции, перевод с английского, М., 1963.

  Б. Б. Кадомцев.

Большая Советская Энциклопедия (МА) - i009-001-230119196.jpg

Рис. 2. Конфигурации тороидальных магнитных ловушек, а — тороидальный соленоид («бублик»), в котором винтовая траектория заряженной частицы обвивает круговые силовые линии магнитного поля; траектория не замкнута — за каждый оборот вокруг тора частица смещается поперёк него на расстояние d от своего исходного положения (тороидальный дрейф); б — «гофрированный» тор; в — тороидальный соленоид с центральным проводником. Складываясь, магнитные поля обмотки соленоида и центрального проводника образуют поле, силовые линии которого винтообразно навиваются на тороидальные поверхности; г — «скрученный» тор.

Большая Советская Энциклопедия (МА) - i010-001-248899577.jpg

Рис. 1. В однородном (H=const) магнитном поле заряженная частица движется по окружности, если её скорость направлена поперёк поля (а), и по винтовой линии, если скорость частицы, кроме поперечной v^, имеет и продольную (по полю) составляющую v|| (б). R — радиус окружности (ларморовский радиус).

Большая Советская Энциклопедия (МА) - i010-001-254139188.jpg

Рис. 3. Движение заряженной частицы в «зеркальной» магнитной ловушке: при продвижении в область сильного поля радиус траектории частицы уменьшается. «Магнитное зеркало», от которого отражается частица, находится в «горловой» части конфигурации.

Большая Советская Энциклопедия (МА) - i010-001-258476700.jpg

Рис. 4. Простейшая адиабатическая магнитная ловушка. Стрелки указывают направления тока в коаксиальных катушках.

Магнитные материалы

Магни'тные материа'лы , вещества, существенно изменяющие значение магнитного поля, в которое они помещены. Ещё в древности был известен природный намагниченный минерал магнетит, из которого в Китае изготовляли стрелки магнитного компаса уже более 2 тысяч лет назад. Магнетит — слабый магнетик; значительно более сильным магнетиком оказалось железо. Практическое применение железа как М. м. началось в 19 веке после открытия Х. К. Эрстедом , М. Фарадеем , Э. Х. Ленцем законов электромагнетизма, изобретения Б. С. Якоби машин постоянного тока, П. Н. Яблочковым — трансформатора и генератора переменного тока, М. О. Доливо-Добровольским — трёхфазного тока. С 1900 в электротехнике начали применять железо-кремнистые стали, несколько позднее — легко намагничивающиеся в слабых полях Fe — Ni сплавы, получившие широкое распространение в технике связи. Значительно ускорило процесс разработки новых М. м. развитие теории ферромагнетизма. В середине 20 века появились оксидные М. м. — ферриты , слабо проводящие электрический ток, их стали использовать в технике высоких и сверхвысоких частот.

  Количество применяемых в технике М. м. очень велико. Если рассматривать М. м. с точки зрения лёгкости намагничивания и перемагничивания, то их можно подразделить на магнитно-твёрдые материалы и магнитно-мягкие материалы .

  Хотя к магнитно-мягким и магнитно-твёрдым материалам относится подавляющее большинство М. м., в отдельные группы выделяют термомагнитные сплавы , магнитострикционные материалы , магнитодиэлектрики и другие специальные материалы.

  Качество М. м. непрерывно повышается путём применения всё более чистых исходных (шихтовых) материалов и совершенствования технологии производства (термические обработки материалов в защитных средах, вакуумной плавки и др.). Улучшение кристаллической и магнитной текстуры М. м. позволит уменьшить потери энергии в них на перемагничивание, что особенно важно для электротехнических сталей. Формирование специального вида кривых намагничивания и петель гистерезиса возможно при воздействии на М. м. магнитных полей, радиоактивного излучения, нагрева и др. При создании М. м. (например, магнитно-мягких материалов с большой индукцией насыщения и с малой шириной магнитного резонанса ) перспективны редкоземельные элементы. Разрабатываются М. м., в которых магнитные свойства сочетаются с целым рядом других свойств (электрическими, оптическими, тепловыми).

  Физические свойства основных М. м. приведены в таблицах к статьям Магнитно-мягкие материалы и Магнитно-твёрдые материалы .

  Лит.: Бозорт Р. М., Ферромагнетизм, перевод с английского, М., 1956; Займовский А. С. и Чудновская Л. А., Магнитные материалы, 3 изд., М. — Л., 1957; Дружинин В. В., Магнитные свойства электротехнической стали, М. — Л., 1962; Смит Я., Вейн Х., Ферриты, физические свойства и практические применения, перевод с английского, М., 1962; Вольфарт Э., Магнитно-твердые материалы, перевод с английского, М. — Л., 1963; Редкоземельные ферромагнетики и антиферромагнетики, М., 1965; Лаке Б., Баттон К., Сверхвысокочастотные ферриты и ферримагнетики, перевод с английского, М., 1965; Рабкин Л. И., Соскин С. А., Эпштейн Б. Ш., Ферриты. Строение, свойства, технология производства, Л., 1968; Вонсовский С. В., Магнетизм, М., 1971; Pfeifer F., Zum Verstandnis der magnetischen Eigenschaften technischen Permalloylegierungen, «Zeitschaft für Metallkunde», 1966, Bd 57, H 4; Tebble R. S., Craik D. J., Magnetic materials, L. — N. Y. — Toronto, 1969; Chin G. Y., Review of Magnetic Properties of Fe — Ni Alloys, «IEEE Transaction on Magnetics», 1971, v. 7, № 1, p. 102.

  И. М. Пузей.

Магнитные обсерватории

Магни'тные обсервато'рии, научно-исследовательские учреждения, в которых осуществляется непрерывная регистрация временных изменений (вариаций) магнитного поля Земли и проводятся регулярные измерения абсолютных значений напряжённости геомагнитного поля и его направления (см. Земной магнетизм ). М. о. снабжены различного типа магнитографами и магнитометрами , их размещают преимущественно вдали от городов, электрифицированных железных дорог и крупных промышленных предприятий, способных исказить геомагнитное поле. Ряд М. о. входит в состав комплексных магнитно-ионосферных станций.

  Данные М. о. служат для изучения поведения геомагнитного поля, которое является чутким индикатором сложных процессов, протекающих в магнитосфере, ионосфере и в недрах Земли. Кроме того, их используют при наземной и аэромагнитной съёмке для учёта магнитных вариаций и приведения к одной эпохе результатов измерений, выполненных в разное время. М. о. осуществляют также поверку полевых магнитометров, применяемых для разведки полезных ископаемых.

  В России к 1829 М. о. были построены в Петербурге и Казани (они были первыми в Европе), затем М. о. были созданы в Нерчинске, Барнауле, Колывани, Екатеринбурге, Тбилиси и др. Первая в мире полярная М. о. открыта в 1924 в проливе Маточкин Шар на Новой Земле. В 1939 на базе магнитного отделения Главной геофизической обсерватории под Москвой организован Институт земного магнетизма (см. Земного магнетизма, ионосферы и распространения радиоволн институт АН СССР). В СССР функционирует более 40 М. о. (1972), в том числе ряд обсерваторий в полярных районах (в Арктике и Антарктике). В мире насчитывается свыше 130 постоянно действующих М. о., в том числе в Вене (Австрия), Нанте (Франция), Ситке (Аляска), Гонолулу (Гавайские острова) и др. Однако распределение их крайне неравномерно: наибольшее количество М. о. приходится на территории Европы, меньше всего на территории океанов и морей. 29 советских и 90 зарубежных М. о. регулярно направляют информацию о состоянии магнитного поля и ионосферы Земли в Международные центры, которые находятся в СССР, США, Дании и Японии.