Большая Советская Энциклопедия (КВ) - Большая Советская Энциклопедия "БСЭ". Страница 41
Новые возможности открыло применение лазеров в оптических линиях связи. Развитие оптических линий связи с их задачами модуляции колебаний,детектирования, гетеродинирования, преобразования частоты световых колебаний потребовало переноса в оптику методов радиофизики и теории колебаний.
Возникла нелинейная оптика, изучающая нелинейные оптические эффекты, характер которых зависит от интенсивности света (самофокусировка света, генерация оптических гармоник, вынужденное рассеяние света, параметрическая генерация света, самопросветление или самозатемнения света). Методами нелинейной оптики создан новый класс перестраиваемых по частоте источников когерентного излучения в ультрафиолетовом диапазоне. Нелинейные явления в оптике существуют только в узком диапазоне интенсивностей лазерного излучения. При малых интенсивностях нелинейные оптические эффекты отсутствуют, затем по мере роста интенсивности они возникают, возрастают, но уже при потоках интенсивности 1014 вт/см2 все известные вещества разрушаются лазерным лучом и превращаются в плазму. Получение и исследование лазерной плазмы является одним из наиболее интересных применений лазеров. Осуществлен термоядерный синтез, инициируемый лазерным излучением.
Благодаря высокой концентрации электромагнитной энергии в пространстве и по спектру лазеры находят широкое применение в микробиологии, фотохимии, химическом синтезе, диссоциации, катализе. К. э. привела к развитию голографии— метода получения объёмных изображений предметов восстановлением структуры световой волны, отражённой предметом.
Работы по К. э. были отмечены Нобелевской премией 1964 по физике (Н. Г. Басов, А. М. Прохоров, СССР, и Ч. Таунс, США).
Лит.: Квантовая электроника. Маленькая энциклопедия, М., 1969; Фабрикант В., Классика, кванты и квантовая электроника, «Наука и жизнь», 1965, № 10; Прохоров А. М., Квантовая электроника, «Успехи физических наук», 1965, т. 85, в. 4; Басов Н. Г., Полупроводниковые квантовые генераторы, там же, 1965, т. 85, в. 4; Шавлов А., Современные оптические квантовые генераторы, там же, 1963, т. 81, в. 4; Таунс Ч., Получение когерентного излучения с помощью атомов и молекул, там же, 1966, т. 88, в. 3.
Н. В. Карлов.
Рис. 3. Метод трех уровней: а — населённости уровней при отсутствии накачки; б — мощное вспомогательное излучение накачки уравнивает населенности уровней Е1 и Е3, создавая тем самым инверсию населенностей уровня Е2 по отношению к уровню Е1.
Рис. 1. a — спонтанное излучение фотона; б — вынужденное излучение; в — резонансное поглощение; Е1 и Е2 — уровни энергии атома.
Рис. 2. Распределение частиц по уровням энергии Е, Е1, Е2, Е3, Е4, Е5 в соответствии со статистикой Больцмана; N — число частиц на уровне.
Квантовые переходы
Ква'нтовые перехо'ды, скачкообразные переходы квантовой системы (атома, молекулы, атомного ядра, твёрдого тела) из одного состояния в другое. Наиболее важными являются К. п. между стационарными состояниями, соответствующими различной энергии квантовой системы, — К. п. системы с одного уровня энергии на другой. При переходе с более высокого уровня энергии Ek на более низкий Ei система отдаёт энергию Ek — Ei, при обратном переходе — получает её (рис.). К. п. могут быть излучательными и безызлучательными. При излучательных К. п. система испускает (переход Ek ® Ei) или поглощает (переход Ei ® Ek) квант электромагнитного излучения — фотон — энергии hn (n — частота излучения, h — Планка постоянная), удовлетворяющей фундаментальному соотношению
Ek - Ei = hn, (1)
(которое представляет собой закон сохранения энергии при таком переходе). В зависимости от разности энергий состояний системы, между которыми происходит К. п., испускаются или поглощаются фотоны радиоизлучения, инфракрасного, видимого, ультрафиолетового, рентгеновского излучения, g-излучения. Совокупность излучательных К. п. с нижних уровней энергии на верхние образует спектр поглощения данной квантовой системы, совокупность обратных переходов — её спектр испускания (см. Спектры оптические).
При безызлучательных К. п. система получает или отдаёт энергию при взаимодействии с др. системами. Например, атомы или молекулы газа при столкновениях друг с другом или с электронами могут получать энергию (возбуждаться) или терять её.
Важнейшей характеристикой любого К. п. является вероятность перехода, определяющая, как часто происходит данный К. п. Вероятность перехода измеряют числом переходов данного типа в рассматриваемой квантовой системе за единицу времени (1 сек); поэтому она может принимать любые значения от 0 до ¥ (в отличие от вероятности единичного события, которая не может превышать 1). Вероятности переходов рассчитываются методами квантовой механики.
Ниже будут рассмотрены К. п. в атомах и молекулах (о К. п. в твёрдом теле,ядре атомном см. в этих статьях).
Излучательные квантовые переходы могут быть спонтанными («самопроизвольными»), не зависящими от внешних воздействий на квантовую систему (спонтанное испускание фотона), и вынужденными, индуцированными — под действием внешнего электромагнитного излучения резонансной [удовлетворяющей соотношению (1)] частоты n (поглощение и вынужденное испускание фотона). Поскольку спонтанное испускание возможно, квантовая система находится на возбуждённом уровне энергии Ek некоторое конечное время, а затем скачкообразно переходит на какой-нибудь более низкий уровень. Средняя продолжительность tk пребывания системы на возбуждённом уровне Ek называется временем жизни на уровне. Чем меньше tk, тем больше вероятность перехода системы в состояние с низшей энергией. Величина Ak = 1/tk, определяющая среднее число фотонов, испускаемых одной частицей (атомом, молекулой) в 1 сек (tk выражается в сек), называется вероятностью спонтанного испускания с уровня Ek. Для простейшего случая спонтанного перехода с первого возбуждённого уровня E2 на основной уровень E1 величина A2 = 1/t2 определяет вероятность этого перехода; её можно обозначить A21. С более высоких возбуждённых уровней возможны К. п. на различные нижние уровни (рис.). Полное число Ak фотонов, испускаемых в среднем одной частицей с энергией Ek за 1 сек, равно сумме чисел Aki фотонов, испускаемых при отдельных переходах:
, (2)т. е. полная вероятность Ak спонтанного испускания с уровня Ek равна сумме вероятностей Aki отдельных спонтанных переходов Ek ® Ei, величина Aki называется коэффициентом Эйнштейна для спонтанного испускания при таком переходе. Для атома водорода Aki ~ (107— 108) сек–1.