Большая Советская Энциклопедия (ИН) - Большая Советская Энциклопедия "БСЭ". Страница 144

  Дальнейшие обобщения. Концепции И., созданные Стилтьесом и Лебегом, удалось впоследствии объединить и обобщить на интегрирование по любому (измеримому) множеству в пространстве любого числа измерений. Классические кратные интегралы вполне охватываются этим подходом. Потребности таких дисциплин, как теория вероятностей и общая теория динамическим систем, привели к ещё более широкому понятию абстрактного интеграла Лебега, основанному на общих понятиях меры множества и измеримости функций. Пусть Х — пространство, в котором выделена определённая система В его подмножеств, называемых «измеримыми», причём эта система обладает свойствами замкнутости по отношению к обычным теоретико-множественным операциям, выполняемым в конечном или счётном числе. Пусть m — конечная мера, заданная на В. Для В -измеримой функции у = f (x ), х ÎХ , принимающей конечное или счётное число значений y1 , y2 , ..., yn , ..., соответственно на попарно непересекающихся множествах A1 , ..., Аn , ..., сумма которых есть X , интеграл функции f (x ) по мере m, обозначаемый

Большая Советская Энциклопедия (ИН) - i-images-126006873.png
,

определяется как сумма ряда

Большая Советская Энциклопедия (ИН) - i-images-198564821.png

в предположении, что этот ряд абсолютно сходится. Для других f интегрируемость и И. определяются путём некоторого естественного предельного перехода от указанных кусочно постоянных функций.

  Пусть А — измеримое множество и jА (х ) = 1 для х , принадлежащих А , и jА (х ) = 0 для х, не принадлежащих А . Тогда интеграл от f (x ) по множеству А определяют, полагая

Большая Советская Энциклопедия (ИН) - i-images-104367138.png

  При фиксированных m и А И. в зависимости от f может рассматриваться как линейный функционал ; при фиксированном f И., как функция множества А , есть счётно аддитивная функция.

  Следует отметить, что, несмотря на кажущуюся отвлечённость, это общее понятие И. в наибольшей степени подходит для определения такого понятия, как математическое ожидание (в теории вероятностей), и даже для общей формулировки задачи проверки статистических гипотез. И. по отношению к так называемой мере Винера и различным её аналогам используют в статистической физике (здесь в качестве Х фигурирует пространство непрерывных на каком-либо отрезке функций). Упоминавшиеся до сих пор обобщения понятия И. были такими, что f и |f | оказывались интегрируемыми или неинтегрируемыми одновременно.

  Обобщения первоначального понятия И. в другом направлении относятся к функциям одного переменного, но зато дают много больше в исследовании интегрирования неограниченных функций. Ещё Коши в случае функции f (x ), неограниченной в точке х = с , определил интеграл

Большая Советская Энциклопедия (ИН) - i-images-187602318.png
,

когда a < c < b , как предел выражения

Большая Советская Энциклопедия (ИН) - i-images-109082215.png
,

при e1 ® 0 и e2 ® 0. Аналогично И. с бесконечными пределами

Большая Советская Энциклопедия (ИН) - i-images-185263528.png

определяется как предел И.

Большая Советская Энциклопедия (ИН) - i-images-159034080.png
,

при а ® — ¥ и b ® + ¥. Если при этом не требуется интегрируемости |f (x )|, т. е. f (x ) интегрируема «не абсолютно», то это определение Коши не поглощается лебеговским.

  Ещё более широкое обобщение понятия И. в этом направлении было предложено А. Данжуа (1912) и А. Я. Хинчиным (1915).

  Лит.: Лебег А., Интегрирование и отыскание примитивных функций, пер. с франц., М.—Л., 1934; Сакс С., Теория интеграла, пер. с англ., М., 1949; Камке Э., Интеграл Лебега — Стилтьеса, пер. с нем., М., 1959; Уитни Х., Геометрическая теория интегрирования, пер. с англ., М., 1960; Рудин У., Основы математического анализа, пер. с англ., М., 1966; Данфорд Н., Шварц Дж. Т., Линейные операторы. Общая теория, пер. с англ., М., 1962; Невё Ж., Математические основы теории вероятностей, пер. с франц., М., 1969; Federer Н., Geometric measure theory, В. — Hdlb. — N. Y., 1969.

  Под редакцией академика А. Н. Колмогорова.

Интеграл вероятности

Интегра'л вероя'тности, название нескольких связанных друг с другом специальных функций. Интеграл

Большая Советская Энциклопедия (ИН) - i-images-124094390.png

называют интегралом вероятности Гаусса. Для случайной величины X , имеющей нормальное распределение с математическим ожиданием 0 и дисперсией s2 , вероятность неравенства |X| £ x равна F(х /s). Наряду с этим название И. в. употребляют для интегралов

Большая Советская Энциклопедия (ИН) - i-images-184758696.png

Последнюю функцию обозначают обычно erf(x ) (от error function — «функция ошибок»).

  Лит.: Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1965.

Интегральная геометрия

Интегра'льная геоме'трия, раздел математики, в котором изучаются некоторые специальные числовые характеристики («меры») для множеств точек, прямых, плоскостей и др. геометрических объектов, вычисляемые, как правило, с помощью интегрирования. При этом «мера» должна удовлетворять требованиям: 1) аддитивности (мера множества , состоящего из нескольких частей, равна сумме мер этих частей), 2) инвариантности относительно движений (два множества, отличающиеся только положением, имеют одинаковые меры). К И. г. относятся прежде всего задачи нахождения длин, площадей и объёмов, решаемые посредством интегрирования (соответственного простого, двойного и тройного).

  Толчком для развития И. г. послужили задачи, относящиеся к так называемым геометрическим вероятностям, определяемым как отношение меры множества благоприятных случаев к мере множества всех возможных случаев (по аналогии с классическим определением вероятности, как отношения числа благоприятных случаев к числу всех возможных случаев). Первым и наиболее известным примером является «задача Бюффона» (1777): на плоскость, покрытую рядом параллельных прямых, среди которых каждые две соседние находятся на расстоянии h , падает случайным образом тонкая цилиндрическая игла, длина l которой меньше расстояния h между параллелями; какова вероятность того, что игла пересечёт одну из этих прямых. Эта задача равносильна следующей: какова вероятность того, что наудачу взятая секущая круга (диаметра h ) пересечёт данный отрезок длины l < h с серединой в центре круга. Эту вероятность определяют как отношение «меры» множества прямых, пересекающих данный отрезок, к «мере» множества прямых, пересекающих данный круг. «Меру» множеств прямых, состоящих из секущих выпуклых фигур с контурами конечной длины, вводят так, чтобы выполнялись сформулированные выше два требования: аддитивности и инвариантности.

  В случае множества всех прямых, пересекающих прямолинейный отрезок, мера этого множества должна быть, в силу инвариантности относительно движений, функцией только длины отрезка. Из требования аддитивности меры следует, что эта функция f (x ) должна быть аддитивной: f (x + y ) = f (x ) + f (y ), а отсюда вытекает f (x ) = Cx , где C — постоянная. Итак, на плоскости мера множества всех прямых, пересекающих данный отрезок, должна быть пропорциональна его длине. Коэффициент пропорциональности удобно принять равным 2, т. е. условиться, что за меру множества прямых, пересекающих отрезок длины 1, принимается число 2. Тогда мера множества прямых, пересекающих любой отрезок, окажется равной удвоенной его длине.