Большая Советская Энциклопедия (ИМ) - Большая Советская Энциклопедия "БСЭ". Страница 9

  Консульские представители пользуются личной неприкосновенностью и могут быть арестованы или задержаны только в случае преследования за совершение тяжкого преступления или исполнения вступившего в законную силу приговора суда. Они обладают иммунитетом от уголовной, административной и гражданской юрисдикции в их служебной деятельности (это положение не распространяется, как правило, на иски о возмещении вреда, причинённого дорожно-транспортным происшествием), Сотрудники консульства не могут отказываться от дачи свидетельских показаний, кроме показаний по вопросам, связанным с выполнением ими служебных обязанностей. В случае отказа дать свидетельские показания к ним не могут применяться меры принуждения. На основе взаимности им предоставляется фискальный иммунитет (освобождение от налогов и пошлин).

  Консульские конвенции, заключённые СССР с другими государствами, в некоторых отношениях приравнивают И. к. к иммунитетам, которыми пользуются дипломатические представители (например, консульские конвенции, заключённые СССР с Болгарией, ГДР, Чехословакией, Великобританией, Японией и др.).

  И. К. Городецкая.

Иммунитет растений

Иммуните'т расте'ний, невосприимчивость растений к возбудителям болезней и вредителям, а также к продуктам их жизнедеятельности. Частные проявления И. р. — устойчивость (резистентность) и выносливость. Устойчивость заключается в том, что растения какого-либо сорта (иногда вида) не поражаются болезнью или вредителями либо поражаются менее интенсивно, чем другие сорта (или виды). Выносливостью называется способность больных или поврежденных растений сохранять свою продуктивность (количество и качество урожая). Применение устойчивых сортов — наиболее надёжный метод борьбы со многими болезнями растений (ржавчиной хлебных злаков, головнёй и ржавчиной кукурузы и др.). Возделывание сортов подсолнечника, устойчивых против заразихи и моли, привело к почти полной ликвидации поражения его этими вредителями.

  Основатель учения об И. р. — советский биолог Н. И. Вавилов, положивший начало изучению его генетической природы. Он считал, что устойчивость против паразитов выработалась в процессе эволюции растений в центрах их происхождения на фоне длительного (в течение тысячелетий) естественного заражения возбудителями болезней. Если в результате эволюции растения приобретали гены устойчивости к патогенам — возбудителям болезней, то последние приобретали свойство поражать устойчивые сорта вследствие появления новых физиологических рас. Так, у возбудителя стеблевой ржавчины — гриба Puccinia graminis tritici выявлено свыше 250 рас. Каждый сорт пшеницы может быть восприимчивым к одним расам и иммунным к другим. Новые расы фитопатогенных микроорганизмов возникают в результате гибридизации, мутаций или гетерокариозиса (разноядерности) и других процессов. Возможны также сдвиги численности рас внутри популяции микроорганизма в связи с изменением сортового состава растений в том или ином районе. Появление новых рас возбудителя может быть связано с потерей устойчивости сортом, невосприимчивым к данному возбудителю болезни.

  И. р. к заболеваниям контролируется сравнительно небольшим числом генов, поддающихся учёту при гибридологическом анализе. Например, у разных видов пшеницы обнаружено около 20 генов устойчивости к стеблевой ржавчине, которые локализованы на 9 хромосомах, находящихся в разных хромосомных наборах (геномах). Устойчивость или восприимчивость растений — результат взаимодействия двух геномов (растения и паразита), что и объясняет многообразие как генов устойчивости растений к одному и тому же виду возбудителя, так и физиологических рас паразита, способных преодолевать действие этих генов. Такое многообразие — следствие параллельной эволюции паразита и растения-хозяина (Н. И. Вавилов, П. М. Жуковский). Американский генетик и фитопатолог Х. Г. Флор выдвинул гипотезу «ген на ген». По этой теории, все гены резистентного растения (R-гены) рано или поздно должны быть преодолены генами вирулентности паразита, так как темп его размножения намного выше, чем у растения. Тем не менее в природе всегда можно найти растения, устойчивые ко всем известным расам паразитов. Одна из важнейших причин этой стойкости растений — наличие у них так называемой полевой устойчивости (типы устойчивости, при которых паразит может развиваться, но вследствие недостатка пищи в растении, из-за наличия механических преград, неблагоприятного строения устьиц и т. п. развивается медленно, и потери урожая в связи с этим невелики). Полевая устойчивость контролируется полимерными генами, каждый из которых не даёт видимого эффекта устойчивости, но их различные сочетания определяют ту или иную её степень.

  Единой теории И. р. нет вследствие большого разнообразия типов возбудителей болезней и защитных реакций растений. Н. И. Вавилов подразделял И. р. на структурный (механический) и химический. Механический И. р. обусловлен морфологическими особенностями растения-хозяина, в частности наличием защитных приспособлений (например, густое опушение побегов и т. д.), которые препятствуют проникновению патогенов в тело растений. Химический И. р. обусловлен многими химическими особенностями растений. Иногда И. р. зависит от недостатка в растении какого-либо необходимого для паразита вещества, в других случаях растение вырабатывает вещества, вредные для паразита (фитоалексины немецкого биолога К. Мюллера; фитонциды советского биолога Б. П. Токина). Советский микробиолог Т. Д. Страхов наблюдал, что в тканях устойчивых к болезням растений происходят регрессивные изменения патогенных микроорганизмов, связанные с действием ферментов растения, его обменными реакциями. Советский биохимики Б. А. Рубин и другие связывают реакции растений, направленные на инактивацию возбудителя болезни и его токсинов, с деятельностью окислительных систем и энергетическим обменом клетки. Различные ферменты растений, регулирующие энергообмен, характеризуются разной степенью устойчивости к продуктам жизнедеятельности патогенных микроорганизмов. У иммунных форм растений доля участия ферментов, устойчивых к метаболитам патогенов, более значительна, чем у неиммунных. Наиболее устойчивы к влиянию метаболитов окислительные системы (пероксидазы и полифенолоксидазы), а также ряд флавиновых ферментов. В инфицированных клетках иммунных растений активность этих ферментов не только не падает, но даже возрастает. Это активирование обусловлено биосинтезом ферментных белков, как идентичных присутствующим в незаражённых тканях, так и отличающихся от них по ряду свойств (так называемых изоферментов). У растений, как и у беспозвоночных животных, не доказана способность вырабатывать антитела в ответ на антигены. Только у позвоночных имеются специальные органы, клетки которых вырабатывают антитела (см. Иммунитет, Иммунология). В инфицированных тканях у иммунных растений образуются полноценные в функциональном отношении органоиды протоплазмы — митохондрии, пластиды, рибосомы, которые обусловливают присущую иммунным формам растений способность не только сохранять, но и повышать при инфекции энергетическую эффективность дыхания. Вызываемые болезнетворными агентами нарушения дыхания сопровождаются образованием различных соединений, выполняющих, в частности, роль своеобразных химических барьеров, препятствующих распространению инфекции. Следовательно, И. р. — выражение особенностей протопласта, клетки, ткани, органа и организма в целом, представляющего сложную, разнокачественную и в то же время функционально единую биологическую систему. Характер ответных реакций растений на повреждения вредителями, паразитами — образование химических, механических и ростовых барьеров, способность к регенерации поврежденных тканей, замена утраченных органов — всё это играет важную роль в И. р. к вредителям и паразитам. Вместе с тем в ряде случаев существенное значение для проявления И. р. имеют содержание в тканях некоторых химических соединений, анатомические особенности растений и т. д. В большой степени это относится к явлениям И. р. к вредителям-насекомым. Так, ряд продуктов так называемого вторичного обмена растений (алкалоиды, гликозиды, терпены, сапонины и др.) оказывает токсическое действие на пищеварительный аппарат, эндокринную и нейрогуморальную системы насекомых и других вредителей растений.