Большая Советская Энциклопедия (ДИ) - Большая Советская Энциклопедия "БСЭ". Страница 56
mw = F. (1)
Третьим законом является закон о равенстве действия и противодействия (см. Действия и противодействия закон). Когда к телу приложено несколько сил, F в уравнении (1) означает их равнодействующую. Этот результат следует из закона независимости действия сил, согласно которому при действии на тело нескольких сил каждая из них сообщает телу такое же ускорение, какое она сообщила бы, если бы действовала одна.
В Д. рассматриваются два типа задач, решения которых для материальной точки (или поступательно движущегося тела) находятся с помощью уравнения (1). Задачи первого типа состоят в том, чтобы, зная движение тела, определить действующие на него силы. Классическим примером решения такой задачи является открытие Ньютоном закона всемирного тяготения: зная установленные И. Кеплером на основании обработки результатов наблюдений законы движения планет (см. Кеплера законы), Ньютон показал, что это движение происходит под действием силы, обратно пропорциональной квадрату расстояния между планетой и Солнцем. В технике такие задачи возникают при определении сил, с которыми движущиеся тела действуют на связи, т. е. др. тела, ограничивающие их движение (см. Связи механические), например при определении сил давления колёс на рельсы, а также при нахождении внутренних усилий в различных деталях машин и механизмов, когда законы движения этих машин (механизмов) известны.
Задачи второго типа, являющиеся в Д. основными, состоят в том, чтобы, зная действующие на тело силы, определить закон его движения. При решении этих задач необходимо ещё знать так называемые начальные условия, т. е. положение и скорость тела в момент начала его движения под действием заданных сил. Примеры таких задач: зная величину и направление скорости снаряда в момент его вылета из канала ствола (начальная скорость) и действующие на снаряд при его движении силу тяжести и силу сопротивления воздуха, найти закон движения снаряда, в частности его траекторию, горизонтальную дальность полёта, время движения до цели и др.; зная скорость автомобиля в момент начала торможения и силу торможения, найти время движения и путь до остановки; зная силу упругости рессор и вес кузова вагона, определить закон его колебаний, в частности частоту этих колебаний, и многие др.
Задачи Д. для твёрдого тела (при его непоступательном движении) и различных механических систем решаются с помощью уравнений, которые также получаются как следствия второго закона Д., применяемого к отдельным частицам системы или тела; при этом ещё учитывается равенство сил взаимодействия между этими частицами (третий закон Д.). В частности, таким путём для твёрдого тела, вращающегося вокруг неподвижной оси z, получается уравнение:
lze = Mz,
где Iz — момент инерции тела относительно оси вращения, e — угловое ускорение тела, Mz — вращающий момент, равный сумме моментов действующих сил относительно оси вращения. Это уравнение позволяет, зная закон вращения, т. е. зависимость e от времени, найти вращающий момент (задача первого типа) или, зная вращающий момент и начальные условия, т. е. начальное положение тела и начальную угловую скорость, найти закон вращения (задача второго типа).
При изучении движения механических систем часто применяют так называемые общие теоремы Д., которые также могут быть получены как следствия 2-го и 3-го законов Д. К ним относятся теоремы о движении центра масс (или центра инерции) и об изменении количества движения, момента количества движения и кинетической энергии системы. Иной путь решения задач Д. связан с использованием вместо 2-го закона Д. др. принципов механики (см. Д' Аламбера принцип, Д' Аламбера — Лагранжа принцип, Вариационные принципы механики) и получаемых с их помощью уравнений движения, в частности Лагранжа уравнений механики.
Уравнение (1) и все следствия из него справедливы только при изучении движения по отношению к так называемой инерциальной системе отсчёта, которой для движений внутри солнечной системы с высокой степенью точности является звёздная система (система отсчёта с началом в центре Солнца и осями, направленными на удалённые звёзды), а при решении большинства инженерных задач — система отсчёта, связанная с Землёй. При изучении движения по отношению к неинерциальным системам отсчёта, т. е. системам, связанным с ускоренно движущимися или вращающимися телами, уравнение движения можно также составлять в виде (1), если только к силе F прибавить так называемую переносную и Кориолиса силы инерции (см. Относительное движение). Такие задачи возникают при изучении влияния вращения Земли на движение тел по отношению к земной поверхности, а также при изучении движения различных приборов и устройств, установленных на движущихся объектах (судах, самолётах, ракетах и др.).
Помимо общих методов изучения движения тел под действием сил, в Д. рассматриваются специальные задачи: теория гироскопа, теория механических колебаний, теория устойчивости движения, теория удара, механика тела переменной массы и др. С помощью законов Д. изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов (см. Упругости теория, Пластичности теория, Гидроаэромеханика, Газовая динамика). Наконец, в результате применения методов Д. к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, внешняя баллистика, динамика паровоза, автомобиля, самолёта, динамика ракет и т.п.
Методы Д., базирующейся на законах Ньютона и называются классической Д., описывают движения самых различных объектов (от молекул до небесных тел), происходящие со скоростями от долей мм/сек до десятков км/сек (скорости ракет и небесных тел), и имеют огромное значение для современного естествознания и техники. Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света; такие движения подчиняются др. законам (см. Квантовая механика, Относительности теория).
Лит. см. при ст. Механика.
С. М. Тарг.
Динамика подземных вод
Дина'мика подзе'мных вод, отрасль гидрогеологии, рассматривающая теоретические основы и методы изучения количественных закономерностей режима и баланса подземных вод. С точки зрения методологических построений, основывающихся на теории фильтрации, неразрывно связана с гидравликой и гидромеханикой. В зарубежной литературе понятие Д. п. в. нередко отсутствует, большая часть относящихся к ней вопросов рассматривается гидрологией подземных вод.
Многие положения Д. п. в., касающиеся главным образом гидромеханических проблем, заложены во 2-й половине 19 — начале 20 вв. исследователями, работавшими в области гидравлики и теоретической механики, — французскими учёными Д. Дарси и Ж. Дюпюи, установившими линейный закон фильтрации, русским учёным Н. Е. Жуковским, работавшим над теорией движения подземных вод, и др. Современные основы теории и методики Д. п. в. созданы преимущественно работами советских учёных, проведёнными в 20—30-х гг. 20 в. в связи с решением задач гидротехнического строительства. Н. Н. Павловский разработал проблемы динамики грунтовых вод в связи с гидротехническим строительством, Г. Н. Каменский — проблемы связи Д. п. в. с геологическими условиями, вопросы движения грунтовых вод в неоднородных пластах, методику расчёта подпоров грунтовых вод и др. Для развития Д. п. в. большое значение имеет разработка вопросов нефтяной подземной гидравлики (газогидродинамика), заложенной в СССР работами Л. С. Лейбензона.