Большая Советская Энциклопедия (ГР) - Большая Советская Энциклопедия "БСЭ". Страница 223
Независимо и из других соображений идея Г. возникла в геометрии, когда в середине 19 в. на смену единой античной геометрии пришли многочисленные «геометрии» и остро встал вопрос об установлении связей и родства между ними. Выход из создавшегося положения был намечен исследованиями по проективной геометрии, посвященными изучению поведения фигур при различных преобразованиях. Постепенно интерес в этих исследованиях перешёл на изучение самих преобразований и поиск их классификации. Таким «изучением геометрического родства» много занимался немецкий математик А. Мёбиус. Заключительным этапом на этом пути явилась «Эрлангенская программа» немецкого математика Ф. Клейна (1872), положившая в основу классификации геометрий понятие Г. преобразований: каждая геометрия определена некоторой Г. преобразований пространства, и только те свойства фигур принадлежат к данной геометрии, которые инвариантны относительно преобразований соответствующей Г.
Третий источник понятия Г. — теория чисел. Уже Л. Эйлер (1761), изучая «вычеты, остающиеся при делении степеней», по существу пользовался сравнениями и разбиениями на классы вычетов, что на теоретико-групповом языке означает разложение Г. на смежные классы по подгруппе. К. Гаусс в «Арифметических исследованиях» (1801), занимаясь уравнением деления круга, фактически определил подгруппы его группы Галуа. Там же, изучая «композицию двоичных квадратичных форм», Гаусс по существу доказывает, что классы эквивалентных форм образуют относительно композиции конечную абелеву Г.. Развивая эти идеи, немецкий математик Л. Кронекер (1870) вплотную подошёл к основным теореме о конечных абелевых Г., хотя и не сформулировал её явно.
Осознание в конце 19 в. принципиального единства теоретико-групповых форм мышления, существовавших к тому времени независимо в разных областях математики, привело к выработке современного абстрактного понятия Г. (норвежский математик С. Ли, нем. математик Ф. Фробениус и др.). Так, уже в 1895 Ли определял Г. как совокупность преобразований, замкнутую относительно их композиции, удовлетворяющей условиям 1), 2), 3). Изучение Г. без предположения их конечности и без каких бы то ни было предположений о природе элементов впервые оформилось в самостоятельную область математики с выходом книги О. Ю. Шмидта «Абстрактная теория групп» (1916).
Теория групп. Конечной целью собственно теории Г. является описание всех возможных групповых композиций. Теория Г. распадается на ряд больших разделов, выделяемых чаще всего дополнительными условиями на групповую композицию или внесением в Г. дополнительных структур, связанных определённым образом с групповой композицией. Перечислим важнейшие разделы теории групп.
а) Теория конечных Г. Основная проблема этой старейшей ветви теории Г. — классификация т. н. простых конечных Г., играющих роль кирпичей при построении произвольной конечной Г. Одним из наиболее глубоких фактов, установленных в этой теории, является теорема о том, что всякая неабелева простая конечная Г. состоит из чётного числа элементов.
б) Теория абелевых Г. Отправной точкой многих исследований в этой области служит основная теорема о конечно-порождённых абелевых Г., полностью выясняющая их строение.
в) Теория разрешимых и нильпотентных Г. Понятие разрешимой Г. является обобщением понятия абелевой Г. Оно по существу идёт от Галуа и тесно связано с разрешимостью уравнений в радикалах. Для конечных Г. это понятие может быть определено многими равносильными способами, которые перестают быть равносильными при отказе от конечности Г. Изучение возникающих при этом классов Г. составляет предмет теории обобщённо разрешимых и обобщённо нильпотентных Г.
г) Теория Г. преобразований. Понятие Г. возникло исторически именно как понятие Г. преобразований, но в дальнейшем было освобождено от этой конкретной оболочки. Тем не менее теория Г. преобразований осталась важной частью общей теории. Типичный вопрос в ней: какими абстрактными свойствами обладает Г., заданная как Г. преобразований некоторого множества? Особое внимание привлекают, в частности, Г. подстановок и Г. матриц.
д) Теория представлений Г. — важное орудие изучения абстрактных Г. Представление абстрактной Г. в виде некоторой конкретной Г. (например, в виде Г. подстановок или матриц) позволяет проводить тонкие вычисления и с их помощью обнаруживать важные абстрактные свойства. Особенно велики успехи теории представлений в теории конечных Г., где с её помощью получен ряд результатов, недоступных пока абстрактным методам.
е) Из разделов теории групп, выделяемых внесением в Г. дополнительных структур, согласованных с групповой композицией, отметим теорию топологических Г. (в них групповая композиция в некотором смысле непрерывна), в частности её старейшую ветвь — теорию групп Ли.
Теория Г. является одной из самых развитых областей алгебры и имеет многочисленные применения как в самой математике, так и за её пределами. Например, с помощью теории Г. русский учёный Е. С. Федоров (1890) решил задачу классификации правильных пространственных систем точек, являющуюся одной из основных задач кристаллографии. Это был исторически первый случай применения теории Г. непосредственно в естествознании. Большую роль играет теория Г. в физике, например в квантовой механике, где широко используются соображения симметрии и теория представлений Г. линейными преобразованиями.
Лит.: Александров П. С., Введение в теорию групп, 2 изд., М., 1951; Мальцев А. И., Группы и другие алгебраические системы, в кн.: Математика, ее содержание, методы и значение, т. 3, М., 1956, с. 248—331; Курош А. Г., Теория групп, 3 изд., М., 1967; Холл М., Теория групп, пер. с англ., М., 1962; Варден Б. Л. ван дер. Метод теории групп в квантовой механике, пер. с нем., Хар.,1938; Шмидт О. Ю., Абстрактная теория групп, в кн.: Шмидт О. Ю. Избр. труды. Математика, М., 1959; Федоров Е. С., Симметрия правильных систем фигур, в кн.: Федоров Е.С., Симметрия и структура кристаллов. Основные работы, М., 1949; WussinG Н., Die Genesis des abstrakten GruppenbeGriffes B.1969 S.1
М. И. Каргаполов, Ю. И. Мерзляков.
Рис. к ст. Группа.
«Группа народовольцев»
«Гру'ппа народово'льцев» название двух петербургских революционных организаций, преемственно между собой связанных. 1) «Г. н.» [М. С. Александров (Ольминский), А. А. Федулов, А. Ю. Фейт, А. А. Ергин, Н. Л. Мещеряков] возникла в 1891, разгромлена властями в апреле 1894. Вела пропаганду среди рабочих, издала два номера «Летучего листка» (№1—1892, № 2 — май 1893), ряд воззваний. Объявляя о верности «основным принципам» старого народовольчества (см. «Народная воля» ), «Г. н.» вносила в свою практику и идейную аргументацию некоторые новые черты, вызванные изменением социально-политической обстановки в России и влиянием русских социал-демократов.
2) В «Г. н.», существовавшую в 1894—96, вошли несколько членов первой группы, уцелевших от арестов, и новые деятели (А. С. Белевский, Е. А. Прейсс, представители рабочей подгруппы, в том числе А. С. Шаповалов). Вторая «Г. н.» в конце февраля 1895 восстановила подпольную типографию, т. н. «Лахтинскую». Члены её выпустили 3-й (апрель 1895) и 4-й номера (декабрь 1895) «Летучего листка», брошюры («Царь — голод» А. Н. Баха и др.). Эволюция в направлении к марксизму выразилась у второй «Г. н.» гораздо определеннее, чем у первой, что особенно сказалось на содержании четвёртого «Листка», издание которого В. И. Ленин приветствовал в работе «Задачи русских социал-демократов» (см. Полн. собр. соч., 5 изд., т. 2, с. 458). Вторая «Г. н.» в практической работе сблизилась с Петербургским «Союзом борьбы за освобождение рабочего класса»: брошюра Ленина «Объяснение закона о штрафах, взимаемых с рабочих на фабриках и заводах» напечатана в типографии «Г. н.». 24 июня 1896 «Лахтинская» типография была захвачена полицией; большинство участников «Г. н.» арестовано.