Большая Советская Энциклопедия (АС) - Большая Советская Энциклопедия "БСЭ". Страница 50
Развитие небесной механики. Современник Галилея И. Кеплер, будучи в Праге ассистентом Тихо Браге, после смерти последнего получил непревзойдённые по точности результаты наблюдений планет, проводившихся в течение более чем 20 лет. Особое внимание Кеплера привлёк Марс, в движении которого он обнаружил значительные отступления от всех прежних теорий. Ценой огромного труда и длительных вычислений ему удалось найти 3 закона движения планет, сыгравших важную роль в развитии небесной механики (т. н. Кеплера законы), 1-й закон, гласящий, что планеты движутся по эллипсам, в фокусе которых находится Солнце, разрушил тысячелетнее представление о том, что орбиты планет обязательно должны быть окружностями. 2-й закон определил переменную скорость движения планеты по орбите, 3-й закон установил математическую связь между размерами эллиптических орбит и периодами обращения планет вокруг Солнца. Таблицы движения планет, составленные Кеплером на основании этих законов, намного превзошли по точности все прежние и оставались в употреблении в течение всего 17 в.
Дальнейший прогресс А. тесно связан с развитием математики и аналитической механики, с одной стороны, и с успехами оптики и астрономического приборостроения — с другой, фундаментом небесной механики явился закон всемирного тяготения, открытый И. Ньютоном в 1685 (Ньютона закон тяготения). Следствием этого закона оказались и законы Кеплера, но лишь для того частного случая, когда планета движется под влиянием притяжения одного лишь центрального тела — Солнца. Выяснилось, что в реальном случае, при наличии взаимного притяжения между всеми телами Солнечной системы, движение планет сложнее, чем описываемое законами Кеплера, и если они всё же соблюдаются с хорошим приближением, то это результат сильного преобладания притяжения массивного Солнца над притяжением всех остальных планет. Гравитационная сила, выражающаяся простой формулой в случае притяжения между двумя материальными точками, приводит к очень сложным математическим построениям в случае нескольких точек или притяжения между телами, состоящими из многих материальных точек. Именно такими являются все тела Солнечной системы, да и все космические тела вообще. Лишь благодаря трудам многих математиков, прежде всего Ньютона, затем Ж. Лагранжа, Л. Эйлера, П. Лапласа, К. Гаусса и ряда др., сложнейшая задача о движении, фигурах и вращении планет с их спутниками была решена с высокой точностью. Блестяще подтвердившееся предсказание английского астрономом Э. Галлеем следующего появления кометы, носящей теперь его имя, и вычисление французским учёным А. Клеро момента прохождения кометы через перигелий в 1759, открытие в 1846 Нептуна по вычислениям французского астронома У. Леверье, обнаружение на основе вычислений невидимых спутников у некоторых звёзд (у Сириуса и Проциона немецкого астрономом Ф. Бесселем в 1844), впоследствии увиденных в большие телескопы, явились блестящими подтверждениями того, что движение небесных тел происходит в основном под действием гравитационных сил. Наиболее сложным является движение Луны вокруг Земли, но и его удалось представить с почти исчерпывающей точностью. Остававшиеся в движении Луны небольшие отклонения от теории, которые раньше приписывались какому-то негравитационному влиянию, в 20 в. объяснились ошибками в измерениях времени вследствие неравномерности вращения Земли. Т. о., небесная механика, пользуясь данными, доставляемыми астрометрией, оказалась в состоянии объяснить и пред вычислить с очень высокой точностью почти все движения, наблюдаемые как в Солнечной системе, так и в Галактике, и подготовить почву для труднейших экспериментов — запусков искусств, спутников Земли и космических зондов.
Телескопические наблюдения. Усовершенствование телескопа шло сначала довольно медленно. По сравнению с трубой Галилея некоторым улучшением было предложение Кеплера заменить рассеивающую окулярную линзу собирающей, что расширило поле зрения и позволило применять более сильные увеличения. Этот простой окуляр был затем усовершенствован Х. Гюйгенсом и применяется поныне. Однако вследствие хроматической и отчасти сферической аберрации изображения продолжали оставаться расплывчатыми, с радужными каёмками, что заставляло для уменьшения их влияния увеличивать фокусные расстояния объективов (до 45 м), сохраняя сравнительно малые их диаметры, т. к. в то время не умели выплавлять большие блоки оптического стекла. Но и с такими несовершенными инструментами был сделан ряд важных открытий. Так, Гюйгенс в 1655 разглядел кольца Сатурна (Галилею диск Сатурна казался удлинённым или «тройным»). Гюйгенс открыл наиболее яркий спутник Сатурна, Дж. Кассини обнаружил ещё 4 других, более слабых спутника. Он же в 1675 заметил, что кольцо состоит из двух концентрических частей, разделённых тёмной полоской — «щелью Кассини». В 1675 О. Рёмер по наблюдениям затмений спутников Юпитера открыл конечность скорости света и измерил её.
Дальнейшее усовершенствование оптических инструментов пошло по другому пути. Ошибочно считая, что дисперсия света пропорциональна преломлению. Ньютон пришёл к заключению, что невозможно сделать объектив ахроматическим. Это явилось толчком к созданию рефлекторов, в которых изображение строится вогнутым зеркалом, принципиально лишённым хроматизма. Постепенное совершенствование искусства шлифовки зеркал, сделанных из сплава олова с медью, позволило делать рефлекторы всё больших размеров, допускающих очень сильные увеличения. Так, в 1789 В. Гершель (Англия) довёл диаметр зеркала до 122 см. Однако начиная с середины 18 в. рефракторы также получили существенное усовершенствование. В это время были созданы стекла с большой дисперсией (флинтглас), и объективы стали делать двойными, сочетая 2 сорта стекла. Наряду со значит. уменьшением хроматизма такие объективы были свободны и от сферической аберрации, что позволило во много раз сократить длину трубы, повысить проницающую силу инструментов и получать чёткое изображение без радужных каёмок.
При помощи новых инструментов искусные наблюдатели сделали много открытий, причём относящихся не только к телам Солнечной системы (таких, как открытие М. В. Ломоносовым в 1761 атмосферы у Венеры и исследование комет), но и к миру слабых и далёких звёзд. Так, были обнаружены многочисленные звёздные скопления и туманности (считавшиеся в то время также скоплениями, в которых из-за их удалённости не видны отдельные звёзды). Первые каталоги таких объектов были составлены во Франции Ш. Мессье (в 1771 и 1781); введённые им обозначения употребляют и поныне. В результате обширных систематических наблюдений В. Гершель обосновал ограниченность звёздной системы в пространстве и укрепил т. о. предположения И. Ламберта (1761) о существовании многих звёздных систем, из которых та, где находится Солнце, ограничивается Млечным Путём. Лишь в 20 в. эта теория «островной Вселенной» получила подтверждение и дальнейшую разработку.
Роль телескопа в А. далеко не исчерпывается такими открытиями. Может быть ещё важнее применение телескопа к точным угловым измерениям. У. Гаскойн в Англии (1640) поместил в фокусе телескопа нити, которые видны на фоне наблюдаемого объекта, и этим повысил точность визирования во много десятков раз. Им же был изобретён первый окулярный микрометр для измерений малых угловых расстояний между деталями изображения, одновременно видимыми в поле зрения телескопа. Ж. Пикар во Франции (1667) снабдил телескоп разделёнными кругами, по которым отсчитывались углы с точностью до секунды дуги; это определило и соответствующую точность измерений сферических координат звёзд, без чего не был бы возможен дальнейший прогресс в области астрометрии и звёздной А. Применив такой инструмент в работах по триангуляции во Франции, Пикар получил новые, более точные размеры земного шара, используя которые Ньютон открыл закон всемирного тяготения. Измеряя взаимные положения компонентов двойных звёзд с помощью окулярного микрометра, В. Гершель (1803) установил, что многие из них представляют собой физически связанные взаимным тяготением системы, состоящие из двух (а иногда и больше) звёзд, обращающихся вокруг общего центра масс по законам Кеплера. Этим была доказана действительная универсальность тяготения, действующего во всех местах Вселенной. Сравнивая свои телескопические определения координат звёзд со старыми греческими (Гиппарх, Тимохарис), Галлей обнаружил в 1718, что 3 яркие звезды — Альдебаран, Сириус и Арктур — изменили своё положение настолько, что это нельзя было объяснить ошибками старых наблюдений. Так были открыты собственные движения звёзд. К 1783 число звёзд с известным собственным движением возросло до 12; исследуя их, В. Гершель пришёл к заключению, что часть собственного движения каждой звезды является отражением движения Солнечной системы в пространстве и определил направление этого движения (в сторону созвездия Геркулеса). Всё это помогло начать изучение распределения и движения звёзд в системе Млечного Пути, получившей впоследствии название Галактики. Телескопические же наблюдения привели английского астронома Дж. Брадлея в 1725 к открытию явления аберрации света, которое он правильно объяснил конечной скоростью света, а в 1748 — к открытию нутацииземной оси.